-A192 374 IITERRCT!VE NETHORKED NOVING FLRTFORH SINULATORS(U)
VRL POSTGRADUATE SCHOOL
R OLIVER ET AL. FEB 88 lPSS?-BG-OOZ MIPR- RTEC-48-47
UNCLASSIFIED

172

25

16

oy
=9 E

L J
...

4.’
‘\-f'

i4

!l

1.0

E

-

-
“
-

——

i

NPS52-88-002

NAVAL POSTGRADUATE SCHOOL

Monterey, California

AD-A192 374

DTIC

INTERACTIVE, NETWORKED, MOVING
PLATFORM SIMULATORS

Michael R. Oliver
David J. Stahl, Jr.
Robert B. McGhee
Michacel J. Zvda

February 1988

Approved for public release; distribution unlimited
Prepared tor:

haval Oceans Systems Lenter
5an Dieqgo, CA 92157 ,

TN e N,
\)i¢ , :_J\.\

“w

v

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin Kneale T. Marshall
Superintendent Acting Provost

This work was supported by the U.S. Army Combat Developments Experimentation
Center, Fort Ord, California, the Naval Ocean Systems Center, San Diego and the Naval
Postgraduate School’s Direct Funding Program. This work was generated from Michael
R. Oliver’s and David J. Stahl, Jr.'s joint Masters Thesis.

Reproduction of all or part of this report is authorized.

This report was prepared by:

M2 N gobed
—

MICHAEL J. ZYDA
Associate Professor

of Computer Science

Reviewed by: Released by:

REMGEN
Chairman Actm ean of Ipformatipn and
Department of Computer Science Poli€y Scnence

E I I . R P T A T R R
AR A A T

e
- F 4
PRI IR)

)

' D
o) :':':“1‘.!

DA R AN

PR

. s
.

Sty o,

-~
«

v

) NN

WY (M
Y Sy Sk B Sy A W

'-'\""‘.‘I).‘l

R 3N

V@A

~

"--
LA S B NS 3

n.l_

..I

=

2 . W - - - - U ¥ > L3 - - - N [L} o -
S pLpiklr N
DRITY CLASSTcaon 7 ¥ SEG: , -
REPORT DOCUMENTATION PAGE
Ya REPORT SEC R 7Y (LASSIECAT ON ‘b RESTR:CT VE MARKINGS
UNCLASSIFLED
2a SECVR TV C_ASSE AT ON AL TOR T 3 D.STRBUTION AVAILABILITY OF REPORT
Cb DEC. ASS - CATON DOWNGRIAD NG SCmeludt
Unlimited
4 PERFOANANC DRLAN JATON REFORT AUMAERS 5 MONITORNG ORGANIZATION REPORT NULMBER(S)
RS S I
Ba NAMI 05 PERETRVIAG ORTAN ZATON o OFF CE Sv~ 801 73 NAME OF MONITORING ORGANIZATION
(if appircadle) US Army Combat Developments Experiment Centey
Compruler Solelice Department Naval Ocean Systems Center
S ADDRELNS Oy Crgre 3nag ZPCode) 'n ADDRESS(City State and Z/P Code)
Mo i rosty caduate School Ford Ord, CA 93941
Looateo, NIRETENE] San Diego, CA
Ba NAME DF - LTNG SEONSOR L B Ot Ct 5 0L |9 FRUCREMENT NSTRUMENT DENT HCATION NUMBER I,
DREAN JATON (It applicabre)
Natal Uiean Svstems (enter MIPR ATEC 48-47 and AT ES 49-87
Bc ADDRISSCty Ytate and 2P Coge) '0 SOLIRCE OF FUNDING NiMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO
_ ,\,\1.\“":Lba_'1 \‘.—\7._ .
T Tos dinctude Securiny Jlassification)
| lateactive, Networked, Moving Platform Simulators
PIRSONAL AL THOR(s:
i Michiel B. Oliver, David J. Stahl, Jr., Robert B. McGhee and Michael J. Zyda
133 TYEL OF RESPORT Y3b T ME COVERED 14 DATE OF REPORT (Year, Month Day) [:5 PAGE COUNT
Tecnrival oM 0 February 1988 133
B OGUPPLEVENTARY NOTATON
v CO5AT COLES 18 SBIECT TERMS (Continue on reverse f necessary and identify by block number)
sep | Group SUB GAO.P
__."___M_‘_k-k_.7_‘__-TﬁhA4__,_A_____ﬁ
*9 ABSTRACT [Continue on reverse if necessary and identify by block number)

Previous research has produced a real-~time FOG-M missile flight simulation using Defense
“apping Agency digital terrain elevation data and a Silicon Graphics, Inc. IRIS 3120
ciapiivs workstation. This study is a continuation of that project with the goals of
prowiding mere realistic targets and allowing viewing the terrain from inside several
fitferent tvpes of vehicles. In addition, the use of Ethernet network communications
“.r e twe wolestations taking part in the simulation is used to create a missile/target
gocolhe wnvirenment. ! i

’
™~
20 Dy RA TR AL ARLITY OF ARSTRACT 21 ABSTRACT SECURITY (LASSIFCATION
B scoasseen v e [sarcs as oy (] 51iC USERS UNCLASSIFIED
o NAME) AESEANS R N DY A 22b TELEPHONE (Include Area Code) | 22¢ OFFf (£ SYMBOL
Michae!l 1. /Zvda 408-646-2305 522
PR s APR gAd E . lexh
DD FORM 1473, 2a - a2 El ed 1 on may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
A thar oditinn, are v’)DSQfGKG e T T) N o
i, S Goverament Printing Oftice 1986606 24)
B S S : A e T RN TR T p R s m e . . .
Ll Lt S Pt O s LV, M o A UL L L L E S 4
f P 0 A 30 s W A K (3 0 MO) Lhe 2 X a0 28 X) y) v o X 1 o

A X o 2) 3) y 'y

.. . ‘

)
L]
D7)
"‘
AOCE
W
l.*.\
oo
o
il'.~',
(
e
A
.\'..
.\-‘.‘ > . .
e Interactive, Networked, Moving Platform Simuiators
\"
\
e Michael R. Oliver, David J. Stahl, Jr., Robert B. McGhee and Michael J. Zyda *
.
. ,‘_; Naval Postgraduate School,
e
i Code 52, Dept. of Computer Science,
£ Monterey, California 93943
o~
'-r_:.
“ar
. -
o ABSTRACT
-':- Previous rescarch has produced a real-time FOG-M missile flight simulation
'. using Defense Mapping Agency digital terrain elevation data and a Silicon Graphics,
A
'.'_:. Inc. IRIS 3120 grabhics workstation. This study is a continuation of that project with
.
-2
._2::. the goals of providing more realistic targets and zllowing viewing the terrain from
.»:J':

inside several different types of vehicles. In addition, the use of Ethemet network

S

R 4
~

communications between two workstations taking part in the simulation is used to

5
{'I‘I.l

N,

create a missile/target gaming environment.

LA e,

>
2 ','1.")'1',"'

‘ LA
il b X 212
‘l.- B .‘r-'

d :'\ﬂ.
.-‘_-'_

Fand

e

$ This work was supporied by The US Amy Combat Developments Expenmentstian Center, Fort Ord, Califomia. the
Naval Ocean Systems Center, San Dhego and the Naval Postgraduate School 't Direct Funding Program. This work was
generated from Michael R Oliver's and Dawvid] Suahl, Jr.'s joint Masters Theas

* Contact author

L G5

(3
A A

x
L

rlam BE NGNS NS

vAS
A

A%

2
\:

+
‘i
<

?
a
£)

N A S O N) ANt e
SN S R AT W A SN NN

2
v)

2 3% W, Wy

TABLE OF CONTENTS

I. INTRODUCGCTIONooiiiiiieeiertteietececeie et sraeertesesesssaaeseaaaseassnnesssaanne 8

A. BACKGROUND ...t ettt sbe et saees 8

B. LIMITATIONS OF THE ORIGINAL SYSTEMcccecovvinivnieennnen. 9

1. Frame Update Speedccccooviviiiiiiiniiimeniiini i 9

2. Vehicle ANIMAationcoocooviiiiiiiieieieercciriereee s e eeessessneresneecoseenesas 9

3. NEIWOTKING oottt e e 10

4. USET INLEITACE ...ooiiiiiieiiei ettt e erseererree et e e s b srreee s sraee o 10

C. ORGANIZATION ...ooiiiiiiiciniieee e et ertasseetee e s smsssestanesseaeesareeenas 10

II. EFFICIENCY IMPROVEMENTS ...t ecteeee e 12

A, PRE-FLIGHT ittt ee et eera e e e seeesrae e e 12

1. Data file fOrmMAlooooiiiiii e e e e a e e 12

2. Terrain Polygon COnsStruCtionccccocveviininininiiin s 15

3. Coordinate SYSIEMcocciiiiiiiiiniee ettt e 19

B. DISPLAY LOOP ...ttt ebee s see et s e s 20

1. Revised FUNCHOMSoooiveiirriiiiiieiirieereeetaseeea e sreeeeneaeensaveresabenees 21

2. Ground Level ... e 21

B, VIiEW BOUNAS ..oevviiiiiiiieie e st ae e e e e 21

C. MISCEIANEOUS ...coevvvii e ce st et e et ba e e eennae s 24

2. DAL STUCIUTES .voiiiivieiiieie e iiseiereeietesetaesrssaeeesseeansmsseeasneassnneesanees 26

C. RESULTS ettt ette e et a st e et sareee e aeneee 31

1. MOVING VEHICLE CONSTRUCTION AND DISPLAYccccce.ee. 35

A. THREE-DIMENSIONAL GRAPHICAL DISPLAY ... 35

1. Z-Bufferingcoocooiiieiiiiiie e s 35

2. Binary Space Partitioningcccoecoviviioiniiniininciiniicene e 37

3. Painter’s AIgOTIthmcooiiiiiiiiiii 39

4. SCAN LINES oottt eeeesa e s s ba e e e e e brae e s anre s 40

5. Backface Polygon Removalcccocoiiiiniininniii s 4]

B. HIDDEN SURFACE COMPARISONSccooiiieiiriicrnne e 42

C. TARGET TYPES AS OBJECTS ...t e 43

Lo TANK oottt st ertr e e e e e e e e n e aesnae e s ae e neaeeaanee 44

2. JEEP oot eeser sttt a e ee s s asenae sanesae 51

3. TIUCK o e tve st e s et st a s e e et e e enne S5

Q. MISSIIE ..o e e e bt e et aeae e e re e e renes 60

D. TARGET ANIMATION ...ttt e e eiree s 62

1. INIHANZAGON L ot reeeaese e e s s e e 62

2. Display LOOP ...ccooiiiiiiiiiiiici 66

4

N N A L N

RalA i ot it i liat Aat it et itk S St et e e Al Sl Bl Sal Bad Sob Bt Aad Sub ek Aok Sad A Ah A Ab Sl A A8 S om & |

a. Read Operator Caontrols 66
b. Detine the Viewtng Boundary ..., 70 ,
¢. Update the Vehicle Positions ..., 72 !
d. Updaung the Vehicle Gnd Armay ..., 78
e. Updanng the Viewing Orentation ... 86 |
f. Displaying the Terrain Map and Vehicles ... 90
IV. NETWORKING . e 103
A. CAPABILITIES ... vt et 103
B. IMPLEMENTATION ... 105
C. LIMITATIONS e s 111
o V. MOVING VEHICLE SIMULATOR USER’S GUIDE ... 113
I A. INTRODUCTION ..ottt sessse s sss st es e 113
E:::-j B. INITIALIZATION ...ttt 113
t::'-‘_ 1. OPening MENUocooiiiiiiiiiiiee ettt b e 116
";.— 2. MAIN MENU oot e e e 116
b 8. OPUONS ooovcooveeeoeoreereses e 116
o b. Defining Vehicles ..o e 117
[3. Switch VEhicles MENUo.ovivivieieceieeeeeeeeeeeeeeet et 120
C. DRIVING CONTROLS ..ot 121
_ 1. Driven Vehicle Controlscccoooveviiniiiciiiiiiiinie e 121
L 2. DIIven VEhiCle VIEWSo..ovoiieiieieeesieeoeeveeeeeeee e seses e 123
o 3. MENU SEIECHORS ...vveeriiririeerecieis ettt ettt s 123
o 4. Target DeSIUCHONoiirimiieiniriiens e eeeees 126
Ny VI. CONCLUSIONS AND RECOMMENDATIONS ... 127
A. LIMITATIONS e e s 127
"\ B. FUTURE RESEARCHccccoiiiiiiic e 130
e LIST OF REFERENCES ...t 131
-'f: INITIAL DISTRIBUTION LIST ..ot 132
e
N
2
o
B
-".t- : ff’_?",sf“,”°“ For
°. | NTIS GRA&I -_#—J
&Y | DTIC TAB 0
-'::J ; Unanneunced O
:;: i Justitication _
e T T e
-"_v i
d _ “ Ry . .
9., , ™. ‘}_p;stributicn/_]
-s.::_ { %, . \ | Avatlability Codes
}\.' \ . ’(“',/" / {—— A g"ail ﬂnd/cr—“-
) ::; 5 - s Dist Special
et Q(/\ |
N
\‘,?
A A e T T e L e e e L L

g — O

(PSS N O N O o] '.\) [NSV I ST A S)
f ’ ' ' :

1

i i I TR T NV ST

FERNICER N
SR
Rl A

t

(VS IR WIS N VY]
% \ . \ \
Neollle S e SRV

3-21

324

3-10.
3-11.
312
3-13.
3-14.
3-15.
3-16.
3-17.
3-18%.
3-19.
3-20.

3-22.

323

DTED File Layout

LIST OF FIGURES

Terrain Elevation Data Inputc.ooooviiiiiiiiic e
Simulator Elevation File Layoutcocoveniiiiiiieiiicec,
Terrain Elevadon Data Input (Revised)oooooeveeiiiiiiiiniiiiiic
Terrain Contour POlYgONS ...

.Terram Polygon Co

Terrain Polygon Co

DSITUCTION oottt et evans
nstruction (Revised)coooooiiiiiiiiii e,

Perspective Viewing VOIUME ...
Terrain Polygons DIawn ...

Z-Buffer Algorithm

. Display Rate vs. Number of Vehicles (Old Data Structure)
. Vehicle Object ATTaYS ..o
. Display Rate vs. Number of Vehicles (New Data Structure)

BSP Tree COnStTUCHOMN . ovee ettt ee et te et e e e e e eraneeean

Paintei’s Algorithm

Scan Line AlOrithm ...
Backface Polygon Removal ...,
Polygon Draw Sequence ..., s

Tank Parts ...
Distorted Tank ...
Tank Turret and Gu
Tank Tracks

n Drawing Order ...

Tarnk Track Special Drawing Technique ...,

Tank Full Protile ..
Jeep Parts ...
Jeep Tire Drawing
Jeep Cabin Drawin
Jeep Full Profile ...
Truck Parts

OTAEr .o e
gOTder ..o

Engine, Cabin and Trailer Drawing Order ...
Truck Tire Drawing Ordercccooviiiiiiiiiii

Truck Tire Special
Truck Full Profile

Misstile Parts ..
Missile Full Profile
Vehicle Definttion

Drawing Order ...

Data Linked LiSt ..o,

13
14
16
17
18
19
20
23
25
27
30
33
36
38
39
40
41
43
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

61
63

3-25 Vehicle Grid ATTAY oottt
: 3-26. Reading Operator COMMTOIScoiiiiieiiiieieeeiie e
“ 3227, DAl BOX oottt ettt eneee s

5 3-28. Define the Viewing Boundariesccocoooiiivimieie i

3-29. Viewbounds ..o

L 3-30. Update Vehicle POSIIONS ...occoiiiiiiiiiiiiiiiiiceeeeeee e e

i~ 3-31. Vehicle Speed oot

e 3-32. Incline and Tilt COMPULATON ..ot e

:‘.:: 3-33. Determining Where to Draw a Vehicle ...

. 3-34. First Quadrant Example Drawing Order ..o

. 3-35. Overlap Code BItS oo

- 3-36. Grid Square Edge Threshold Valuesccocoovievnnennicseenee

__ :'.:: 3-37. Drawing a Vehicle in an Adjacent Grid Squareocooooeeieiiiiniinnann.

= 3-38. Update Vehicle Grid EXAMPIE .o..ooooooeooreeesoecooceoeeerreeeeeoerererenene oo

o 3-39. Update the LOOK POSIIONo.oiiiiieieiceie e

3-40. Calculating the Look POSIHON ©.......oiiiivevisesnensosseosesssssosssesens e

, 3-41. Display Terrain Initializationocooiiiiieiiiee e

3-42 Viewing TransformMatiONsc...coceeeriiiiiriiieiiie it

3-43.0ctant SCan LINES ..o e

3-44. Displaying an OCLANToiiiiiiiiiiee e et

3-45. Displaying the Vehiclesooooriiiiiiii e

3-46. VEhiCle AXIS oottt ettt et st

3-47. Vehicle COUMSE ittt v st

3-48. Displaying the MiSSIle ..ot

3-49. Destroyed Vehicle ... e

4-1. SImUulAtor SYSIEIMS ..iiiiiiiii ittt e a et s s b

4-2. Network CONNECHONSooiiveiiiieie it te et se e s b s eraens

4-3. Inttial Data Transfer ... e

. 4-4. Dasplay i.00p Data Transfer ...

- 5-1. Contour DISPIays ...

');-“ 5-2. Driving Display e ettt ettt et ebe s

) 5-30Jeep VICW e

.‘f‘ S5-40 Tank VIBW s

>, 6-1. DISPIay SCBNE . e
AN
:
0.
o

. -.".

- N e DI P S ARG T TR SRR ¥ Pt T, "
L . s) \.".-I‘.n‘\."\).'-f..-"\-‘_\-'.‘f"-f&-’\v’ \f\f~f‘f~

67
69
70
71
73
75
77
79
81
82
83
85
87
88
89
91
93
95
96
97
98
100
101
102
104
106
108
109
118
122
124
125
128

SRl g s a0 SR ot s saar séa- ol . - - g - 3 b Ba Mai Bt ey et Bev Sl it et Jhuv Jie ials et e Bt Meb el St S fge dae Eas_|

'y s M

-

\

:_
{ [. INTRODUCTION

4 Y

[A. BACKGROUND
b".

' This study is a continuation of the development of the graphics simulation described
\

- in [1]. Previous research has produced a real-time flight simulation of a missile flying
‘.; ey -

N over three-dimensional digitized terrain displayed on a Silicon Graphics, Inc. IRIS-3120
-8 . . . « -

; high performance graphics workstation. The simulation allows interactive control of the
1 “‘ - . N -
N missile’s speed, course, altitude and camera viewing orientation. The missile controls
¥

N and camera display were designed to mimic the actual FOG-M control panel used by the
. military. These controls can be used to maneuver the missile over the terrain to locate,
: designate and destroy any target of opporunity. The targets are ten tanks arbitrarily
: located on the terrain map traveling at a speed of fifteen knots. Each tank’s course is
.. constant until a map boundary is reached at which time the course is reversed. Once a
-~ target has been destroyed, the program is reset allowing another missile to be launched at
- any of the ten onginal ten tank targets.

- This study developed a Moving Vehicle Simulator using the same terrain database
- and program organization as the original FOG-M project. The vehicle simulator
o,

L4

e interfaces with the FOG-M simulator via a communication link allowing two
- independent users to interact with each other in real-time. '
.

Y

4

-

N
ey 8
I
L
L5
L,
LY,
\

7

B. LIMITATIONS OF THE ORIGINAL SYSTEM

The goal o the original FOG-M study was to develop a low cost simulation of a
missile tlying over digitized terrain. This goal was satisfactorily achieved and has
subsequently opened many new areas of research. Some of these new areas are discussed
in this study. The primary goal of this study is to produce a moving vehicle simulator
that presents out-the-window views from several different types of vehicles, and to
incorporate both the original FOG-M system and the Moving Vehicle simulator into a
network of cooperating simulators. A specific objective in continuing the original FOG-
M project is to improve the simulation speed and enhance the display realism.

1. Frame Update Speed

The standard frame rate for a motion picture is twenty-four frames per second.
It is the goal of any real-time program to achieve such a frame rate. The original FOG-M
project has an average frame rate of three frames per second. An improved frame rate of
six frames per second has been achieved by limiting slow math function calls and
graphics object manipulations. The algorithm for displaying the terrain and vehicles for
example, has been rewritten to draw only the polygons in the user field-of-view. While

the new frame rate is still much less than that of a motion picture, it presents smooth

- motion.

2. Vehicle Animation

t. The types of vehicles that can be displayed has been changed from only tanks in

WA :he FOG-M simulator to tanks, trucks and jeeps in the Moving Vehicle simulator. These

e

vehicles can be preset to a desired course and speed and positioned at any location on the

terrain. A vehicles's course is modified when it attempts to climb a steep hill, with the

EXNELLRNY
CREEEEN?
o

Lol
)$J

R

R .Li.:.ua_.;- ‘s um ..g:‘u .n).u"..'\-\v ot ﬁ;_:ﬁ‘rm"wl\i

(A

et e -

ot

D)
A A

[e

‘ o [
RO WL L PP

ot
a_xz v

> 15 - v " - - u " J - J v e A) - _ bl il A A ol AR

vehicle also inclining and ulting. These combined effects give a more realistic view of
actual vehicles traversing rough terrain. In addition, the system allows an out-the-
window view from any vehicle on the terrain.

3. Newworking

To nnprove the realism of the project {or vehicle portrayal, a second Silicon

Graphics, Inc. IRIS-5312¢ was connected 10 tne mussile graphics workstat:on via an
Ethernet communications hink. Use of thiv connection allows one operator to
interacuvely control the misside Hying over the terrain, and a sceond operator 1o
interactively control vehicle targets. When a vehicle 1s destroyed, an explosion and pile
of meral s displayed.
o User Intertuc g

ihroughout the implementation of this project, special consideration has been
given to provide user fnendly menus and displays. In addition, the time to load the

digitized terrain data has been reduced to prevent lengthy penods of waiting.

C. ORGANIZATION

The above sections of this chapter have provided a background on the major areas
descnibed in this study. It 15 expected that the reader has a tamibanty with computer
graphics and the basics of real-time interactive computer graphics techniques. Chapter 11
discusses the specific efficiency improvements that have been made in developing the
vehicle simulator as compared to the FOG-M system. The display improvements and
addiuons o the FOG M simulator such as target object creation, new data structures used
and hidden surtace methods emploved are covered in Chapter 111, The added capability

of networking two workstations is discussed in Chapter IV, In addition, a briet review of

10

Ay R Tt e e e R AT T
T T e
oA o e X X

) B -\.'{‘\':' -
o d L ! O 0

S

LA A

wiw.

rw

['q

LiaUel ol il o .
e e e @

hidden surface algonithms is included with the target object discussion to give the reader

[

‘
*

»
1

e I e

P I Y B

a better understanding of the graphics technigues used in the simulator. Chapter V

)4
PN

contains a user’s guide for operaung the Moving Vehicle Simulator. Chapter VI

concludes with discussion in the areas of future recominendations for follow on research

and summanzes the research conducted.

s et
e

N

18

Pl
.
)

L" 4

[S

(]
LAl

.
‘0

]
7, ot
Y

AR N

ER R

.
LI

[y

o

s
v

.
(s

vy " «
A
4 KRN

4 v o1
st e

)
v o8 T
s
P

»

s]
LA}
‘:’.

Gl
s s

LG GG
l,l,ll}l") g "

11

AREAN IOEROER

T
»

e T e AN A T AT AT R A T I R L Y s e e e e .
A . B G U R e

AN .
P AT O I, W N IO N S0 S B R R

4 a

[y
PR

II. EFFICIENCY IMPROVEMENTS

s
P 4

e
NP

ST M

A. PRE-FLIGHT

D
.

s by

o

0y

o s
i}

*

Pre-flight processing in the original FOG-M simulator consists of the following

general steps:

&
¥ -v A'n

e - input raw terrain elevation data
\ - convert raw data to program internal form
. | - store converted data in internal storage structure
- create graphical objects for subsequent display
- Data input, conversion and storage presently cause a 100 second delay before the
S
s
oI simulator is ready to display animation. Each of these areas was examined with the
o . A
- - intent of reducing pre-flight processing time to provide a more responsive simulator. The
e
o efficiency of the tourth area, creation of the graphical objects, is dependent on the
b
{ performance of the IRIS graphics library routines, and thus was not considered.
-
1o R
"5 1. Data file format

The FOG-M simulator and the moving vehicle simulator use Defense Mapping

Agency (DMA) digital terrain elevation data as the source of elevation data for

'l
k \-‘.
0N portraying the three-dimensional scene. This data is stored as a scquential stream of
e
-.\"' . - . - . .
sixteen bit integers, with each two bytes representing one elevation datum. The upper
o
-7.'_’::: three bits of this word represents the height of the vegetation at that data point. The
= lower thirteen bits represent the terrain elevation at that data point, without the vegetation
‘.'--.
®.. height. The entire database is stored as shown in Figure 2-1. Data points in each square
-
- kilometer of the terrain are stored a column at a time, stariing at the most western column
\r‘
.
A of data. Each one kilometer length column of data is stored starting from the most
"’
4 ,5-" 12
B/
.:;.'
..
-,
Y
@
: ~
! :..;
¥ ’\
4 »
P I P PR R R Oy S SR R e T T N N P V0, T T A St R St S X VLSRN
W L e SR N A ML

TN

PRI

|- 1 KM -]

1 DTED File Layout

‘)
<

Fogire

13

.‘-_-.-‘-_.‘.. R R I D T
. * AP Y - ‘-'. - N : ® . Y - . - .
RN o . "o .

NS |

T

S WA
L T

.‘\-

e e
D A W N N e W

e
s

RO
el X

~
" v

L4
A

L W

southern point in the column. The southwestern square kilometer of the database is
stored first, with the remainder of the database stored in individual square kilometers:
from south to north, and from west to east. A detailed description of this file layout can
be found in [Ref. 1: pp. 2G-24].

The original FOG-M simulator read a one-hundred square kilometer region of
elevation data that was stored in the same format as the master file from which it was

extracted. Elevation data points were read into a two-dimensional array of short integers,

gridpixel[][]. Storing the set of points in this manner facilitates referencing an elevation
by its X-Z coordinates. The array element gridpixel[Z][X] stores the elevation at
north-south coordinate Z, east-west coordinate X. Due to the peculiar storage format of
the DMA data, however, the DMA file must be read with a number of nested loops to
store an elevation data point at the correct array index. This nesting of loops contributes
to the slow pre-flight processing time readily obvious in the FOG-M simulator. A section

of this FOG-M code to read the terrain elevation data appears in Figure 2-2.

for (coloffset = 0; coloffset < NUMXGRIDS * 10; coloffset += 10)
for (rowoffset = 0; rowoffset < NUMZGRIDS * 10; rowoffset += 10)
for (col = 0; col < 10; ++col)
for (row = 0; row < 10; ++row)
read(fd,& gridpixel{rowoffset+row][coloffset+col],2);

Figure 2-2. Terrain Elevation Data Input

14

- CYPR R R R S P I T R U I
‘v‘w‘*;:-ﬁkﬁ:—i‘*ﬂ*’&',,,«;g\‘;x’nc;-,’hﬁ-.’ ROy

AN LGSR S st i AE i ol e At ek A R M AT VI A S A A S A R S Sl el S i S Sl el A Sl el A S A0 & SRS S rh 20 a'h g & a0

N
',

i

@

.?

‘:-;:.'z

S
(> An improvement was achievec by reformatting the terrain elevation data file to
N : L : ,
N match that of the two-dimensional array in which it is stored during program execution.
,: The reformatted file is stored as shown in Figure 2-3. Data points for ten lengths of ten
O kilometers are stored a row at a time, from west to east along a row’s length, and from

south to north, going from row to row. This matches the C compiler storage mapping
function for two-dimensional arrays. An array dted/Z DATA PTS][X DATA PTS] is

stored in memory a row at a tme, starting from dred{0]{0] through
‘;:: dred[0][X DATA PTS-1] for the first row. and so on for subsequent rows. To input the
>

"." terrain elevation data upon program startup a single loop is executed, with an entire row
2NN
_;:-_j-' of the array read at each pass through the loop. This much simplified code for reading
‘..-i"'_ the terrain elevation data appears in Figure 2-4.

-I'\“_

2. Terrain Polygon Construction

1

- oy

o,

‘\’ . . .

-2 The FOG-M simulator constructs a three-dimensional contour from colored
J':'.F
v triangular polygons. The ten kilometer by ten kilometer area of missile flight is sectioned

into hundred meter squares, with each square consisting of two triangles. Figure 2-5

-

: v':"O'

v
£
e

depicts this arrangement, and the terminology used. The world coordinates of triangle

: ,“::' vertices are stored in a five dimensional array gridcoord. Indices of this array are:
e
o
::I:::'. gridcoord [Z][X][which_triangle][which _vertex][which_coordinate]
o
0. The example vertex in Figure 2-5 is located in the upper triangle at row 99, column 1,
s and its X, Y, and Z coordinates are stored in
| 3(5:;: gridcoord [99] (1] [U] (0] [X]
v gridcoord [99] [1] [U] [0] [Y]
"y gridcoord [99] [1] [U] [0] [Z]
%, \d
PR
R
N:.g_: 15
D "E:"
@
Pl
i
'{' P R - [- P . row = AN SN LIRS
RN F R N e N O AT BTN

e eane o

T.."......‘“'L-

-
iahan L DOS

-,
S tcecaa..

- 9

hana s 18 SO
Seaul...

“"“"‘--—..-.

"“‘-..-s...-..- —
LY

\-\“4 -

'Q“--N. -

L

ﬁ"'\-- -

v"““- -

AR -~ PR R
[

..
‘7.

LI 1\\\..

LA
AR A .
.I...\..). S

.JJ‘...,.J.

+»
2
0
E
]
—
[V
—
o
<3
=
0
-
o)
]
4
Q
—
jeal -]
. —
0
Fo
q
—
3
a
o)
w
X
o]
Q
v .
i .
b : .“
X Ry
F J i’ -
5y
4.....
,...r-
,../
\r
" .Jmn
-. ‘
.lrhw
‘“
'

RAARATOTR S o b o o
.r.-.-#\f..fn._..q ¥
S s 8 R

R T TR g g g g g g e g geprsrvygvgergrgwygey rl-'l,-JJJFJ.'.'VJ"‘IV-FH'\-VRv"'rrrJn"rrwv*.

for (row = 0, row < Z_DATA_PTS; ++row)
read’id, & dted{row [[0],202);

Figure 2-4. Terrain Elevanon Data Input (Revised)

Note that these coordinates are tne same for all three tiangles having this common ;
vertex. Displaying one video frame of terrin consists of looping through X and Z
indices of the gridcoord array to seicct tnangle coordinates for polygons to be drawn,
then cailing the IRIS graphics librarv polygen fill roatine with the approprate color.
Values for the tmangles’ coordinates are determined prior to muissile flight in the function
maketerraini). The elevation data array provides the height (Y) coordinate value, and a
call to function lighiorient() provides the polvgon’s color. As Ref{l] stated, raw
elevation values are scaled t provide rea ism, using an exponential scaling. This
requires a math library function call to the procedure pow(). The orginal FOG-M
program treated each triangle’s set of coordinates separately from adjacent triangles
when performing this scaling, even though most verti:es are shared by as many as six
adjacent triangles. This rcsulted 1n a call to pow() six unes for the same vertex, as each
of the six mangles shanng the vertex were processed. A pseudo-code summary of the
calls :n create the terrain polygons ts given in Figure 2-6.

A marked improvement in pre-flight processinz ume was achieved by

A

performing the height scaling caiculation only once for each mangle vertex. Once this

<
L4
7
o
4

was done, an additional improvement was realized by storing the elevation data file itself

B

“ A

with scaling already performed on each data point. Elevation data input and storage of :

17

L P S A S ~ -
UL SR S S S R) S

L S B
.. u'<' J‘ ;\-'.

e o et -A.f..a_‘}f-

AT
4",‘:1*

22‘1; P .r‘w:. ‘A‘.{. r :'3

DT PR

Bl
v e ‘e %
L

-
-
-

-
.

I (: ,u ”; (- .-l "

r

e

%

Oyl

x5 4%

a

HA

ChC)
a

"-.'.'.f‘ ."l.'l',"‘ .',- ',_4-. AN

0y

N@ e @

P

/.
>
Y "'
L
Oy
.-

L NS

L4

v

Iy

U=1=upper triangle

|

'
A

T

L=O=lower triangle

—>|/———-—100 meters

"GRID SQUARE"

oo}

meters

'

numbering indicates vertex

ordering within a grid square

for backface polygon removal

Example

vertex

Figure 2-5 Terrain Polygons

10 KILOMETERS

18

.....

ik gdh’ el 2 e d gl Bl s B-A i A i Ao Rei g v 2 2 2 a
[
|
|
!

Y T AT AT A T A e Y
B VS A Y

- - Al A Al Bk ol Aal Sod Sad Suf M dd At MAAA A" EA S 5% B Marafotal \al ol sl oon o |

N
o
o ’l
.'_
P
SN
N
P
o
(et
|
) maketerrain()
'-':'\ {
Q.;: for each row of gnd squares do
&N for each column of gnd squares do
| for each triangle in a gnd square do
AR for each vertex in a tnangle do
B call pow() to scale elevation (Y coordinate)
- store vertex coordinates for this triangle
'j:-:. call hghtonent(} to determine color
A }
~ Figure 2-6. Terrain Polygon Construction
NS
X
oy
., terrain polygon vertex coordinates was reduced to simply reading from a file and
N
":'-'_: assigning the gridcoord array element values, with no math library calls for scaling
:;j':: .) .
.- needed during program execution. Note however, that this requires use of an external
{
‘;:::: program to properly read and scale data from the terrain master file and to properly
o
o format output to a file used by the simulator. A slight modification was also made to
I
-"q'

function maketerrain() to speed up determining a terrain polygon’s color. Results of a

U.

run-time profiler revealed function lightorient() contributing most to the slow execution

A speed of maketerrain(). A change was made to maketerrain() that allowed the creation of

] a file to store polygon colors if desired. Subsequent runs of the program can then make
X use of the color values in this file, eliminating calls to lightorient. Figure 2-7 provides a

s
B "

'?.: pseudo-code summary of revised function maketerrain().

. .
3. Coordinate System |
:‘\{: The imtial choice of world coordinate system was based on the DMA terrain ‘
o

AL data: elevation heights in the database are measured in feet. As described above, the

-

’: missile flight area is sectioned into a grid of hundred meter squares, with one hundred of

N 19
3

M

o
e
g

2 e P N o o g 2 N P A 0 o N P A R A 8 X S A P S L L e Y T Lot

-'!..;‘l B 5'5 S n.) \ ,- » <n‘ X - o.t % o .0 .w.t 8 ""- N i 0 .o.' .0.‘.: Ca N :":c . ‘ -- ‘& .OJ"

maketerrain()

{
if color_file exists, read in all polygon cc':rs
for each row of gnid squares do
for each vertex in a row do
store vertex coordinates for all triangles sharing this vertex
if color_file does not exist,
call ightorient() o determine color
store color in color_file

}

Figure 2-7. Terrain Polygon Construction (Revised)

these squares in both north-south and east-west directions. This choice of using a metric
gnd and using data values in the grid measured in feet required several of the program’s
routines to perform conversions between coordinate systems. This conversion introduces
costly floating point divisions and multiplicatiuns, which directly affect both pre-flight
processing time and display loop run time. Since points in the terrain database file were
to be scaled prior to reading the file, an additional conversion of the scaled value to its
metric coordinate system equivalent value could be done to avoid the need for

conversion between coordinate systems. This off-line preprocessing of the terrain

database was done. In addition, a metric coordinate system was consistently assumed for

all calculations in the follow-on version of the Moving Vehicle Simulator.

B. DISPLAY LOOP

Realism in an amimated display depends heavily on the appearance of smooth

24
N motion. For a simulator such as the FOG-M, which constructs the scene as a collection
)
7
ot .o . , . . .
> of flled polygons, it is desired that most of the program’s execution time be spent in .
R
- 20
’,
.h
e
4
e A - ceTel .",:I? *:,“..-,‘.r,:.- r\e{.-{){:r‘ L 'I;-‘_'J',;-": A AR Y

Bl halolo ekl hal Al Al h AN R A Al 4 A0 A-a B+ Ata Bl Men Sim 0 At 2l ol ‘ak el ol ‘el aali ual Mol uak unl LSl st hiint
s Vol dnd rafl Gh C8 A8 6. ha RA'R 2° 0 T

A AN f-!,‘;w:,
|J
L
S

drawing the scene. A large portion of the display loop in the original FOG-M simulator
was spent preparing the graphical objects and the data structures that manipulated them
for subsequent drawing. The efficiency of the functions used in display loop
calculations, and the data structures used by the program to manage the display, were ‘
examined with the intent of increasing the simulator frame rate. ,

1. Revised Functions

a. Ground Level
The graphics commands used to draw the three-dimensional vehicle images
of the FOG-M simulator were collected into graphical objects (Chapter III gives a
detailed account of the actual construction of each of these vehicle objects). Rotations
and translations used to transform a typical vehicle to its correct position and orientation
in the viewing volume are performed on the object as a whole. Translation of a vehicle
object to the appropriate height on the terrain requires determining an interpolated height
value with a call to the FOG-M program function ground level(). Interpolation is
necessary since height values are explicitly specified only at terrain polygon vertices, yet
a vehicle can be located anywhere on the terrain. Simplification of the original
ground_level() function resulted in an improvement of 50% in execution time for this
function. Since this function is called once for every vehicle drawn in the display loop,
this improvement is significant for systems having a large number of vehicles.
b. View Bounds
The Silicon Graphics IRIS workstation uses custom VLSI chips to provide
hardware clipping and matrix transformations. Viewing, modeling, projection and

display device transformations are performed in this high-speed pipelined architecture at

21

@

v
.

"l.('t':'l
P Y

"‘;ﬂ‘

5,

1} q — '.
AN ¢"? A

s

)

(RN

~-

D l,.‘,

v
o e

.
i
v e e .V-

v
S
LA RS

50k AT B

.
»

r
e P e e .'

»
]

| I RAATIVRTAALSY g

-
LAY
..

]

v

n SRR

RS AS AR A A Al i e et o it AT B aA A0 el B Al (ad Sull Snl Sl Sad Sl Aaid v ARAAIA AR A S APl ah talh Sal fal N Mg B A" AtE ang aid 284 SUE" AR et et e J Al

a much faster rate than is possible in software. Application programs need only specify
the desired viewing volume and need not worry about clipping points, lines, planes, or
surfaces to this volume. Any drawing done by an application program that takes place
outside of the currently specified viewing volume is automatically clipped.

The FOG-M simulator defines a perspective viewing volume with a
viewpoint located at the current position of the missile camera in world coordinates. The
Moving Vehicle simulator defines a similar volume, with the viewpoint being that of the
dnver in the vehicle currently being operated. In both simulators, the field-of-view is
limited to a maximum of tifty-tive degrees. This arrungement 1s shown in Figure 2-8.

Depending on the location of the missile or vehicle 1n the viewing volume,
some of the polygons in the scene are outside the tield-of view, and hence should not be
seen. The simulator could take advantage of the IRIS graphics hardware clipping
capability to eliminate the non-visible polygons. Conceivably, cach display frame of the
three-dimensional terrain con.our could be generated by drawing all of the filled terrain
polvgons on each pass through the display ioop. This 1s not done, simply due to the large
number of polygons that coraprise the terrain. With hundred meter squares, composed of
two triangles each, the full one hundred square kilometer flight area contains twenty
thousand polygons' Even with fast custom hardware to do the clipping, the frame rate
would be too slow to provide a realistic sensation of motion over the ground. Sending
only a portion of the polygons through the hardware pipeline to be clipped and drawn
obviously speeds up the frame-to-frame displav It 1s readily apparent that none of the
polygons 1n the direction oppostte the line-of-sight are visible. Rased on this fact, the

onginal FOG-M simulator performs a determination in the function viewbounds() of

22

- "-“_-

'-.w-
NI‘- -

R . e el S P -
R IR TR R G P - AN o S N J:."'

PRI ET ARG E Tl Al nd

»

.y, D)
[l-l.r-"'f v !

e
P
et

»
.

Viewing Volume

Terrain

LA A

.
» %

55 degrees
Field of View

‘g‘lu.l'

@. 55

« 8y

kY
[

1ty
.

W "."5"1_:

P
(RN S R

Figure 2-8 Perspective Viewing Volume

R
L.

& X

«wr
_e.®

23

A A AT AT AT A
Loy A
AT G httity b G

< A ‘a fa A% - B8 "B g S R ‘Rl ‘R va Mall Sl Sl S Aol Madh Rl S Sadh St AT T A T AN SR ACL A A T L TP I
which subset of polygons o present (o the chipping bardware. The method used in
viewbounds() 1o do this determinanon results i the set of polygons to be clipped and

drawn formung a rectangle around the viewpoimnt. However, this set sull contains

polygons that are not visible Only those polygons in the hine of-sight that are actually

" i withir the fie!d-of-view are vimible Tihe viociror s csday frame rate was increased

further by revising vieseboanda s thet o polveans e tie el o0 view are actually

clipped and drawn. This adds an addivon worenetio when the nusale eperator zooms the

h .

A camera n: as fewer polvgor- are drawin she displey apnears smoother As shown in
Figure 2-9, the number of polygons that are nanstormed. chipped. and drawn can greatly
vary. Drawmg only those polsgons thut are i e tield o view however, ensures fewer

'.'_:_-f polygons are diawn than i the rmenad - osn of the amuldator,

: oo Miseellaneous

! Antmation of the mussie and vehwiel in the display 15 done by drawing
:‘::f‘_ these objects at shightdy ditterent locioons from frame-to-frame. Calculations are
' performed in the dispiay oop o wi=date e ponon of the misst’ and target vehicles as

they traverse the wiman, Ap obio s nes Lwale 0y @ function of ats current posiiion,
the direcuon in which at 1y raveling and 1its speed. Tngonometrie funcuons in the math

library were used in the onginal simulaor to determine new object positions and to

¢

perform calculations based on which direcuon the missile camera was turned. To

PP
'l 'l
o

[

P

»
aa0e el
.l

Dt e

minimize the ume 1t takes o culcclate tnponometne function values, lookup tables were

At
v

3l constructed for the cowaire and tangent tencnens These tables provide quick lookup
L 2

N results at a resolutton of one tenth of a dearee. To speed up caiculations involving the
SN

Y .) . e

o arcsin relation the small angie approximenon s also used. For angles less than fifieen
L

g",v

St

L
AR

LA i Il Bal Aad Sad SLA SNAc T T W WP T rr oy

oy Ll it Sall At 0 AN S0 0% 4o gae st BAcaie'ade et Al s |

Polygons within boundary are drawn

™~

d

Original Method

.

.|
Pac
|

S
i

TN
AN

1

PR M

¥

@7
]
b

N
\
N

b e —— &

s
v

>
e

ﬂ“:,: _J L oo 1 L NN S GRS G
s Wide Field of View Narrow Field of View

CA A
RN

Figure 2-9 Terrain Polyvgons Drawn

A«
LI
. . v

;. 25
e
®
. e e T e T et T e AT e M TN T
I T Y ~ . - . - o Wy oy
st s A .t._l A 1...(' o ‘:..l.i‘j‘ J_j' J.AJ-(JJ- (.(nﬂ':n")’ < "L{.‘(‘.‘.u“ﬁ m‘:‘, \{MA.M;{&':K.‘

L re
® AT

S
RN

Pt A R e he e Aia s te 4 an Ana £ :vy—"-y_-'r‘}v_yvvav_v-]'_I-_y-_v]

degrees, the stne of the angle s equal to the angle sselfl wath an error of about one
percent. This approximaton is used in the Moving Vehicle simulator since arcsin values
are required for simall angies onlv The improveraent achieved using look-up tables and

the small angle approximation 1s shown 0 fable 2-1.

E2-1. SPEEDING UP [RIGONOMETRIC FUNCTIONS

I J NMath Lihrary : Approamaton !
Function o o e e e oo e e s s Improvement
o Multisec percall o
tan ‘ 0.125 | 0.027 463%
sin/cos A 0 3 528%
arcsin ! o157 oo i 1442%

2. Data Structures

The average frame update rate achieved by the onginal FOG-M simulator,
which allowed a fixed number of rudimentary vehicles i the scene, is less than three
frames per second. With the real vehicls dynamics capubility descnibed in Chapter 111
added to the simuiator, the frame ipdate rais vavies with the number of vehicles drawn.
Figure 2-10 shows thux refanonship. Even with oniy a small number of vehicles in the
scene, the perforinance »f the <imuleror deyroades vy an pperecsitabls level The UNIX
profile utility was used to determine exactly which routines cause this "bottleneck”, with
the top four time consuming display loop routines shown in Table 2-2.

The first two entries in the table are ¢asily explained. Since the simulator makes
heavy use of polygon fill to draw the desired scene, it 1s expected that the graphics
library function polfr; would take a considerable amount of the CPU time. Likewise,
since the majority of display loop drawing takes place in function display terrain(}), the
same conclusion can be reached. The last two entries in the table. however, are a direct

result of the chotwe of data structure used 1n the onginal FOG-M simulator. Details of

26

FERTERTRETF

Y

L gARC e a4

b gD oAl ad au- el - ot

. e W

L End S Aad Ed ik el Bnd B i-Sa A]

e S

L AN

’

.

Y

.«
..-Jn'-

(a1nqoni3g e3ed PIQ) SI[PTYdA JO J3qunN SAa 33ey Aeids1iq Ql-g 2in3d1y

ve 44 02 81 91 vl a1 o1 8 9 14 (4
-~y 1
jlmfo
O G e B m el . —0" 1
[J -
.ﬁlh:lf/llllllllt aNOoO4ds
®
o e s o ddd
. 5 1 sanvua
sD1WeUAp a[D1yaAa [ead —0'¢
Yyits tojeinuig W DOJA
\.....\.\\.\.\ . . s s S) ' .Y.M._. m..c......\... -.h-.\\.\.v.f,, PR S T W S S Sy Y,

27

P i

A e L I R e

TABLE 2-2. FOG-M ROUTINES USING THE MOST CPU TIME

% CPU Time Routine Name Purpose
16.9 polf Ins graphics library
filled polygon routine.
13.7 display_terrain Output 3-D scene
with hidden surface
removal.
8.7 malloc C language built in

routine for dynamic
memory allocation.
4.5 gl_findhash Low level Iris graph-
ics library routine,
used for the hash
tables associated with
graphical objects (Not
user accessible).

this implementation can be found in [Ref. 1: pp. 76-81]. A short summary of the data
structures and their use in the original FOG-M simulator is presented here as background.
Their impact on simulator performance was explored in this study.

The "painter’s algorithm" for hidden surface elimination as described in Chapter
I is used by the FOG-M simulator. This algorithm draws a scene much as a painter
would, with distant objects drawn first, and with hidden surfaces overpainted by closer
objects. The algorithm is easily implemented for a scene drawn as a grid of squares. For
missile flight over bare terrain, without trees, buildings, or vehicles present, no other
algorithm or refinement of the painter’s algorithm is needed. The algorithm ensures
hidden terrain surfaces are obscured by surfaces closer to the viewpoint. With nothing
more in the scene than terrain polygons, there are no other surfaces that might be
obscured by, or that might themselves obscure the terrain. Integration of targets into the
scene introduced new complexity to the hidden surface removal problem. Management

of vehicle targets in the display was attempted in the following manner.

28

.0
= A vehicle object moving over the terrain is associated with an element of a
-\::: global two-dimensional array, with one array defined for each vehicle type. Th'c fangc of
.: indices in this array corresponds to the number of hundred meter grid squares in each
_'l D, dimension of the missile flight area. Tank objects for example, are associated with the
::::', array tanks{100][100]. The specific array element indices a particular tank is associated
% with is determined by the grid square it occupies. This is illustrated in Figure 2-11,
Tank 'A’ is situated in row Z and column X, and is associated with array element
target(Z][X]. Similarly, tank "B’ is located in a grid square at row Z, column X+2, and is
2; associated with array element rarget[Z]{X+2]. The values stored in these arrays are the
’:jf; integer names of the graphical objects that should be drawn at some point in the painter’s
Z; algorithm. These values are initially set to zero, indicating no vehicles are present. Once
~
V the target vehicles are defined, drawing vehicle objects on the terrain can be done by first
:-' drawing a grid square, then accessing the object name array to draw any vehicles that
‘Ef{ might be present in that grid square. Note that two or more vehicles present in one grid
square are associated with the same array element, and that the commands necessary to
\‘ draw these vehicles are collected into the same graphical object. In addition, a vehicle
crossing grid square edges is drawn in each grid square it occupies. This results in an
.‘ individual vehicle having as many as four sets of identical drawing commands in four
; different graphical objects to draw that vehicle correctly with respect to hidden surfaces.
3’ Since vehicles can move from one grid square to another between frames of the
‘ display, a means was needed to reflect the changing association between vehicles and the
\ array element they corresponded to, as used by the painter’s algorithm. The choice was
é made to delete all vehicle objects and recreate them at each pass through the display
b
NJ‘
::3 29
X ; .
S
A
::..:"-I'; - -C‘31"-'."{"‘-:"-'.'QL‘"-'Z"-I-"I -ﬁ -Z-‘-Z’{‘-Z"-' o ~Z ' -‘.- o 'f:";:‘:'.': Gy -"' e \ -"~." ~ ~. -.' -c v" '\.”u"\-" {) -. N ~ o,

)A’

grid square 7Z,X

TANK

)B’

grid square Z,X+2

TANK

i
X

—

grid square 0,0

grid square 0,99

target object name array

< m

= =

e 4 * *
H _*J [~—
O ”4 (o]
— — +
— ~— >4
o O N =
— — —
PP < &N
v Q [—
a0 b0 +»
[ST 2]]
d d o b0
FO IS | + =
]

+«

Figure 2-11 Vehicle Object Arrays

- L3
il LGN

1
3

PR A
Mt 2 e Bt Y
. ’ L

T L
YUY

30

N e e e Y X T

I NN YV

SYvhunss' @

IR 8
-c...u.-.,.a.(-
.\-\-...\

-
¥
"' loop. This implementation is deficient in three respects. First, the repeated creation and
o deleton of graphical objects makes use of routines malloc() and gl findhash(). As
’ evidenced in Table 2-2, these two functions take a significant amount of CPU time and
are the cause of the display update bottleneck. An alternative to this approach that does
\j not make use of these slow functions is thus suggested. Second, drawing a vehicle as
~.: many as four times as it crosses a grid square edge is both time and space consuming.
- Third, the hidden object removal problem for vehicles in the scene is solved only for the
::-' special case where no more than one vehicle occupies each grid square. In the case of
:E:: several vehicles occupying the same grid square, the commands to draw each of these
’* objects are added to the existing object in the order the vehicles are processed, not in
depth order. This results in vehicles further from the viewpoint possibly being drawn
after and overwriting closer vehicles in that grid square. All of these deficiencies were
, corrected with choice of a different data structure for managing the display. The Chapter
, 11T discussion of hidden surface removal includes a description of this data structure. The
:/_ repetitive creation and deletion of graphical objects and the need to draw vehicle objects
more than once was eliminated by using the new structure. The correction of these three
: deficiencies has increased the simulator display rate.

°

¥ C. RESULTS

Significant improvements were achieved in simulator performance using the
techniques described above. Pre-processing time was considerably reduced, as shown in

Table 2-3.

'-(‘ { » . ..‘u »
] PRy RO

31

- -

- '-.‘ir.".' @',

.qu'-.-r/-ﬂ-'f'-'-f'.-".»c'i

o -." "'*."' -.’u"s" .“'\.'(-\."-J’ -\.'-\" ey

Sal)

I % o
AN '..,\" '\ \."'-"'.f'\.__‘"'- \1.

>

»
LN

RO LR

) et)

e PR o

PP AN A

vt @ SO

13

o
» ..
l-'_

TABLE 2-3. PRE-FLIGHT PROCESSING TIME IMPROVEMENT

Simulator Version Total Time
Original 1 min 41 seconds
Revised 17 seconds

The simulator frame update rate was increased by approximately a factor of three.
Although this figure seems low, this improvement was achieved with the addition of real
vehicle dynamics capabilities, and with the correct display of hidden surfaces in the
scene. Figure 2-12 shows the frame update rates achieved in the revised simulator using
the new data structures, for various number of vehicles in the scene. A UNIX profile
indicates the success of using the new data structure. Table 2-4 lists the top four routines
using the most CPU time in the revised simulator. The majority of processing time is
spent in function displav_terrain(), drawing the polygons that comprise the terrain and
the vehicle objects. Table 2-S summarizes display update rate differences between the
two versions of the simulator. In this table, ’static’ refers to the type of vehicle objects
drawn in the original simulator. 'Dynamic’ refers to vehicle objects that more accurately
model normal vehicle motion over rough terrain, a feature not present in the original
version of the simulator. This added capability is further explained in Chapter III. The
frame rate values are for the indicated number of vehicles, the maximum fifty-five
degrees field-of-view, and the largest possible number of polygons drawn, giving worst-

case update rate values.

...................

PV P N A AL A T R A i T I B I T AP

ol Sl ik Sl il Ralh ol Salt St Sl Ben Sato eyl Juh oBh 4ih ahd Al\e g gee ol oS o ¢ Lot = |

. e n , . -
T e, P g T o VR i A N N N A SRS AV n A T A
‘ R N fla X ol nl Y

(a1n325nI3S ®BIRQ MaN) SI[OIY3aA jo J3qunN “sa ajey Le[dsiq gi-g 2ind14
144 (44 014 81 91 vi al o1 8 8 14 4
- I | |] _ _ { _ _ |
— 1 :
— Z
— &
e
)
. aN0Ods
l‘lll’l'tl b V
i} SANVHd
— G
— 9
so>Tmweudp S9[2TYaA [B3I (3Im
JO3eNWIS I3[D>TYap Butaop |,

..... - E St Ao

W WER

TABLE 2-4. MOVING VEHICLE SIMULATOR ROUTINES
USING THE MOST CPU TIME

% CPU Time Routine Name Purpose

20.2 1_polf Low-level filled po-
lygon pniminve used
by the Geometry En-

gine.

11.7 display terrain Output 3-D scene
with hidden surface
rermoval.

7.1 polf Ins graphics library

user-level filled po-
lygon routine.

4.1 qtest Tests for events on
the valuator queue.
Called in the display
loop to test for menu
selections.

TABLE 2-5. DISPLAY UPDATE RATE IMPROVEMENT

Simulator Version Number of Vehicles Frame Rate (frames/sec)
Original 1 (statzlc) 2.6
10 (static) 1.9
Revised 1 (Sta“.C) 5.7
10 (static) 4.0
Original 1 (d}namx‘c) 1.4
10 (dynamic) 1.2
Revised] (g_xnaml.c) 5.3
10 (dynamic) 4.3
4 |
N
o
' \' t
-~
N
Yt ks semc, - mcp . P 0 L DAL S T B i U N S ST PR TR ~ L
a7 {:}:;:&M’“' .';",":",\{":""-","':"':'"- ":'.'{"? TR RN RIS "',"-:-"’A_ . _';)‘i}:;}‘;

DA Aot et e Dot ab At et dint et et deb et olee Re La- sh\ia- e Atalle SR oAl i Al acA ate Ak e a e nd At s d 40 tod tod ves

II1. MOVING VEHICLE CONSTRUCTION AND DISPLAY

A. THREE-DIMENSIONAL GRAPHICAL DISPLAY
Many different algorithms were studied for optimizing the display of graphical
objects in a three-dimensional scene. The major problemn with time efficient display of
graphical objects is the drawing order of the polygons required to show a non-distorted
view. To solve this problem several algorithms were examined. A brief discussion of
each of the drawing algorithms' merits and downfalls is given below for their
implementation in a real-time graphics display. Throughout the following discussion, the
term distortion implies an incorrect drawing order of polygons resulting in an undesired
view of an object.
1. Z-Buffering
Z-Buffering is a simple yet time intensive approach to eliminate hidden
surfaces [2]. This technique draws only the pixel having the smallest z position of all
the polygons displayed in the viewing volume. Figure 3-1 shows two polygons A and B
each having a different depth z from the view position. Since polygon A has the smallest
z coordinate for the pixel point selected, its pixel is drawn instead of polygon B’s pixel.
Note that this comparison must be performed for each pixel of each polygon drawn.
The actual implementation of the Z-Buffering algorithm requires the use
of two buffers, the z buffer for the smallest z position of all the polygons and the frame
buffer for the intensity values of the closest pixel. The algorithm first initializes the

buffers, then for each pixel of every polygon in the scene calculates a z coordinate and

35

LSl Al ol Sal Sed Sl A AL BA S Al B Sag s, |

"I"

¥
LB . ll.,‘-‘ »

’
[}

Pixel
(x,y)

P

ALy e a e
L2 S
T oh o

N

Salt'e

FhAREN
w*y ',

s
W @

s
pl

Figure 3-1. Z-Buffer Algorithm

W
',

NOSNENYT e

>
LY

AN J

v LS

- ‘v e Tw ™ o T T
DN AN,

TRCRALEN, TN

S e e e
Ay \..F‘y-",\)_\.r_..

SRl R Kol Sl Nl Balh Sagt Sl S AN SN S afh olbh SUACEAS adir Rar i 't At it B Sk St Sad Sl Sl S\ S\e & oa 8 sbun e A

N A SR S ek teh B Dd al DA A e e
=
-
compares it to the last z coordinate stored in the z buffer. If the new z coordinate is
A
:3 smaller than the z buffer coordinate, the z buffer is updated with the new value and the
;_ intensity value of the new pixel is stored in the frame buffer. After this process has been
performed on all the polygons, the two buffers contain the polygon pixels and intensity
; ‘ values for the scene to be displayed.
‘::::: 2. Binary Space Partitioning
'_:_\“_'. The Binary Space Partitioning (BSP) algorithm is based on storing
. . polygons in the view volume in a sorted tree {3]. The tree is sorted with respect to a
‘. polygon being in front or back of a defined partitioning plane. To view the scene, the
x:;‘“ polygons are drawn utilizing the current viewpoint and view direction as guides to the
_'N tree’s traversal.
(The most difficult thing to understand about the BSP construct is how the
e
l’:f_‘ tree is used to draw a scene. This can be explained by using a simple illustration. Take
:‘: for example two halves of a block cut diagonally and separated by a small distance

»

(Figure 3-2(a)). The algorithm takes each of the surfaces of the two halves and

ax

B0

’... .'l“ "-l.t.

constructs a tree (Figure 3-2(b)). The BSP tree contains the position of all the surfaces,

P
PR R R]

-

based on their relative location to the partitioning plane. To display a scene, a tree

]
e

traversal is performed based on the viewer’s position and line-of-sight.

ek

A

A
PR S

Tt

e N

Ny N

i g
P 3 _A_s_ %
! s tate l.
vﬁ.'.‘,“ A
: .

4y o,"l

£‘:. . .l:'-'.'v " v.

e

Call’s

P
\-¥

” .

ST @t e
. S

) = ot)

I T
e

AR AN
pTa T)

OO
LA GS YD

A

-

@
.

a

. -

s
» e N

o

GN AN

4

:
s

XN
S
NG

5 TRy ‘o pra g7 r - ol A TEvITiT e

Partitioning
Plane

OUTSIDE

6

INSIDE

Top View

IN ouT

BSP Tree

b.
Figure 3-2. BSP Tree Construction

38

A R il i el B B AU R A N e M u M S B e Ao R SN RN e o e v A ta fia dn o

- i e At R /o B Rot ot lot at ag
\

3. Painter's Algorithm

The painter’s algorithm is related to painting a picture on canvas. A scene is
created by painting the background first, followed by painting all the other objects in the
scene over the background or each other based on their depth of field in the scene. In a
graphics environment, this is similar to painting the furthest polygons 1irst followed by
the closest polygons. Figure 3-3 shows a progression of three polygons A, B and C with
A being the closest, C the furthest and B in the middle. The painter’s algorithm
calculates the distance from the viewer for each polygon and draws them in order of C

then B then A. Any overlapping of the polygons is obscured by the closest polygon.

y Y
- 4
-z
o
®
(x,y)
B
Nw.»Y)
A
x4 X
L4 -z v
a b.

Figure 3-3. Painter’s Algorithm

]

Lo AN A

M Frn

AT '.' '.- '_- ‘,‘—',-‘ L U

. .. . A S e e e T T e e TR e S e s - Co'te
ST T - CuT - ,.~._x. . TN R S e N Y “\.'u
e e b i il e ah o s o L T e --AFAA‘-.\.A.A;AAA‘X;(‘q‘¢.\-n.f.n QR{H i&*‘ A

L dem dEa s a4 - S v) i el ek Sude Aol madi Sdl BB B SRR S B e . T T A B
!'.'!'.l‘l.'l" . ,’-'-' A et i gad e et il i St i Sl A AN A MO GO i U
. -

7

N

®

hah

o 4 Scan Lines

h The scan line algorithm is primarily used to fill polygons that are defined

in a discrete order. As a scan line is defined, all the polygons that it intersects are drawn
in sequence. The scan lines start at the furthest boundary of the viewing volume and are
incremented towards the viewpoint one line at a time. The scan lines are produced by
scanning from left to right, far to near, to draw the numbered blocks in numerical order.
The scene with each scan is drawn from far to near, therefore any polygons that are
closer to the viewpoint are painted over the farthest polygons (Figure 3-4). The scan line
algorithm can be tailored by the designer to start at any depth and draw polygons only in

the defined viewport to provide an extremely fast screen refresh rate.

¢+ y
4
i
'
A
X
: Figure 3-4. Scan Line Algorithm
> 40
)
,
‘.-J-.'
N
.
o
-
:::
'd
R O R
? e :t'_/.l.{‘.f_“-'_'.’_ v..'.'J"..:.P.J,'(;,..'z,.;.r

V- BT WUWIWISN " . Dl A PACarl arl o Linlh Sl Sl i el el ARG Y A5 B
Dol]
e
DY
-

o

°

-

s 5. Backface Polygon Remevai

_: In addition to the painter’s algonihin, backface polygon removal is used to
t’ draw only one side of a polygon. The backface polvgon removal algorithm samples the
__ . rotation direction that the polygon points are drawn. clockwise (CW) or counter
\ clockwise (CCW). If the polygon points are defined in a CCW rotation, that side is
: drawn. This drawing technique can explained by drawing a three-dimensional box
_-.j: (Figure 3-5). Each side of the box 1s drawn using backface removal to only draw the
:‘I outside of the box surface. When the box 1s completed, all the individual sides are
‘;""5 painted in order of depth. However, the opposite side polygon does not paint over the
.\:; nearest side because its backface is not drawn.
:

+ BACK SIDE CW

FRONT SIDE CCW

.

Figure 3-5. Backface Polygon Removal

5ot
LI BT
R I

. .
e

R |
!
[

-
>y

e

-

41

)",f.i

YNNG

)
PLEN

Pd
a'l)

L

WL MW wm w e L - LI I T P T I I
N".“f\“"\,"'\l’ V"u" < -\'..'r\‘ A A e L
. - » Ml S 2 O »] !

>

Al el sl ll o N

-, W, W TR W T e T 4T 8T M

B. HIDDEN SURFACE COMPARISONS

The performance of a hidden surface display method is dependent on the
application environment in which it is to be used. If polygons are ordered by depth in the
z direcuon, with minimal overlapping, a depth sorting method may be best. For
polygons that are ordered in the y direction, a scan line method is best. The method
employed is therefore dependent on the application.

The BSP algorithm is pnmarily used to display a static scene viewed from various
orientations. Once the BSP tree has been constructed, the polygons are drawn by
traversing the tree using the viewing position and orientation. If there is any relative
motion between objects in the tee, the viewing order changes and requires a
reconstruction of the tree. Since BSP tree construction is a time intensive operation, its
implementation in a real-time dynamic environment is not efficient enough to refresh the
display at a reasonably fast frame rate.

From the previous discussion, it can be seen that the Z-Buffering algorithm is
easy to implement. However the Z-Buffer algorithm requires the performance of many
coordinate comparisons to derive the drawing order. This method requires the use of
special hardware in order to be performed at a fast frame rate. On most graphic
workstations presently available, the Z-Buffer polygon fill rate is many times less that of
the normal shaded polygon fill rate, making this method impractical for a large scene.

A scan line algorithm can be tailored to a dynamic scene if the number of
polygons are ordered in a grid plane. Such an algorithm allows a refresh rate rapid
enough to support real-time visual simulation. The designer of the algorithm needs to be

able to rapidly compute the scan line ordering.

42

D@
R R e a4

.,
."‘4 I: l. Il

afelate

C TARGET TYPES AS OBJECTS

A.."{‘{//
P s

o The use of objects in a graphical environment is similar to a call to a
j:_::'_; programming language subroutine. An object consists of a sequence of graphics
‘l commands that are used more than once each scene. By using objects, construction time
::::j overhead can be avoided. We build our objects outside the display loop and then call
:}Z':: those objects via a named reference [4].
W
‘e The targets and missile are created as graphical objects. They are all constructed
WSS
‘~ with the painter’s algorithm and backface polygon removal in mind for hidden surface
x.j;:: removal. Each polygon is drawn by defining its vertices, determining its light-shaded
\ color, and then drawing the polygon using a graphics call to a polygon fill function
(Figure 3-6). A detailed description of how each of the targets and missile are drawn is
given below.
- Y
) .
~ P1 () ; P1 (y) P1 (2);
- QUxIy.12) gy ()} P2 (y) P2 (2);
- P3 (x) ; P3 (y); P3 (2);
o Pa (x) ; P4 (y); P4 (z);
-/.'_‘-' Ilght_orlent(lx,ly,Iz,x,y,z,&shade);
color(shade);
— x polf(P,points);
VR
: y Figure 3-6. Polygon Draw Sequence
2
e
-2

43

LR
« v ¥ ¥
P N

PRI P

e

SRR AR s

) :
s

3

A
PN
PR

NN
P
pLALST

L. l. I".
LA X

T
‘

P
«

X
2
’_

1 4

2T

l'
P

l.l.l]
o .
[¢

S .
L AR

O -

LS

» e
»

AR RS
AN ’

s

Py

L s
R
¢« ex

) l. ." 'l.

.
.
’

&
v

All of the objects drawn in this study are built using backface polygon removal
and the painter’s algorithm to provide a correct view from any point around the object
from the ground plane and above. Some of the drawing techniques discussed in the
subsequent paragraphs do not work if an object must be viewed from below the ground
plane. The local sorting of polygons using the view direction/line-of-sight were tried in
addition to the painter’s algorithm. It was found that the sorting of the polygons each
time the scene changed was not performed fast enough to support a real-time frame rate.
Therefore, special drawing techniques are used in this study for each object.

1. Tank

The tank used in the existing FOG-M simulator consisted of three separate
parts: a turret, a main body and a gun barrel. These parts were not drawn in an order that
presents an undistorted view of the tank from all directions available in three space.

A new tank object was drawn using all the same parts described above
with the addition of two tank tracks. Unlike the existing tank, the new tank object
polygon parts were separated and drawn in an order to always provide a realistic view
(Figure 3-7(a)). Note that the order of fitting the different parts of the tank together can
change the way they are drawn on the screen. For example, assume that the turret is
drawn first followed by the main body. Using the painter’s algorithm, this would first
draw all the sides of the turret, then draw the top of the main body over the turret (Figure
3-7(b)). If we view the tank from above, similar to the view of a missile, we see a
distorted tank. The solution is to draw the main body first, then the turret (Figure 3-7(c)).

In addition to the ordering of separate parts, picture distortion can still

occur (Figure 3-8). This distortion was caused by the gun barrel being drawn first,

44

..........................

......

AT A R T, . P .
¥ '~ BN W . " LRV TS
! A{‘A.K;‘f;}yfkfm&mlkﬂ ('

Distortion

Turret
Track

Left
S
b
c
Figure 3-7. Tank Parts

Main Body

Track

Gun Barrel

Right

.........\J .-.
PN IJI..-.-.- -

-

1
.
'
€
¥

v

<'l v]
e

e

a

'iLs

‘L;‘.
l
\
f
i
|
|
|
!
i
!
|
!
1

Il

»

4

Tank Barrel is cut off
by front of turret

Figure 3-8. Distonted Tank

followed by the turret. The front polygen of the turret, when viewed from the front,

paints over a section of the gun barrei. This problem 15 corrected by drawing the gun

- ".. ,.

barrel with the polygons of the turrct. The tront of the turret is drawn first followed by

L5

>
.

the gun oarrel, then the rest of the turret. This paints the gun barrel over the turret when
g p 4

‘l 'l
»'s
R

the tank is viewed from above or the side. Now the tank is displayed without any
distoruon (Figure 3-9).

Drawiny the tank tracks presented some new hidden surface problems. A
realistic three-dimenrsional view of the tank with tracks cannot be achieved by using a

simple drawing order. The tank tracks are created as a separate object named track, and

46

.

R . T
= N R " . L Y
PPN NAI N AN

ulhud At sed WA Ml AGAS Ak ed sttt Al At SalC el Sl G 71

L el bl A A AR e A8 dadl Sudl Bol Bad o - wer A aag
Al VA ke Abitiag - It A Sad el A i Al B A AR A Mt Ao SRS Mat Ae . 20 ed B A0 Bd 00 84 0 h 4 B e e aon Sar anr e

S Figure 3-9. Tank Turret and Gun Drawing Order

FOXE

are translated and drawn after the tank’s main body (Figure 3-10(a)). This drawing order

TS
:j:.' would normally not cause a display distortion if a simple track object was used.
N
S
o Unfortunately the tank track is not a simple object (Figure 3-10 (b)).
[J
N To maintain a realistic tank image, the track had to also be a three
e
f - dimensional object with four sides. Therefore the drawing order of
R
®. main body, right side
N right track
- main body, left side
> left track

'.'-‘\‘\NSS

is used, with only a few translations to maintain high drawing efficiency. This drawing

AR

order is only distorted when viewing the tank from the right side. The distortion is

47

-
LS S S

e Catataaly
SN e Py e o @

N TN, < £
___..__,x,,.r.rﬂ.g .-."\

e NSO,

.\'

AN AT J(s'\"\‘

B g N K ¥ X

[
~
J..'l'
2
5
A
A
)
&
x.
.

>

SRR R a'aal® AR A S~ ok Bl Ak Bl Al b B4 £ob 20 Ak A 4y 2y o |

Right Track

Main Body
Left Track

Figure 3-10. Tank Tracks

caused by the inside polygons of the left rollers being drawn over the right side of the
main body (Figure 3-11 (a)). This distortion is hidden by using a color for the right side
of the tank that blends with the color used for the track (Figure 3-11 (b)). Since lighting
model calculations are performed only once in the simulation, this method is felt to be

adequate.

48

................

Nl Aain Wdl. Sadb il Vs Sad 4

Al 2l g LA B Bl i gt i A St S Gt S i are i - aide adiie ol R- U o " odie- A4 " ALY o Ll abic ot ol ol ol ol fint favh e+ et den Sat b Sab e® el Iy

Figure 3-11. Tank Track Special Drawing Technique

All of the mentioned hidden surface drawing techniques are used to create
a three-dimensional light shaded tank object (Figure 3-12). The use of various hidden
surface techniques allow the tank to be viewed from any horizontal or vertical aspect

without any distortion.

e rri @y

2 T e e

P

* l' l' l.‘.‘.‘ __.

»

49

il s

P&l

SN NN Tt e AR
“-.r-fl"’. J""’-“a A y hd 3 " v ¥t v

vy
AL .'.'.i
5
q
]
1

- s

Flad
)
'
-

‘

V-
[
N
I.

2. Jeep

The jeep is a graphical object, similar to the tank, consisting of six parts:
cabin inside, cabin outside, main body, tires, front headlights and rear taillights (Figure
3-13). These parts are drawn in an order to create a three-dimensional light shaded jeep.

The techniques used to integrate the parts into a non-distoried object are discussed below.

Cabin OQutside

Q Cabin Inside
A

/
O
4
®
®

B
" “l Yy "‘- _‘n .‘- "-‘

.

'@

Figure 3-12 Jeep Puarts

r FITYY T Y'Y
s ,. - ‘A.l\
l
|
|
|
|
t
!
|
|

,

51

LNLSS
®cv,

U
‘r'!_‘l_”l_‘

£
E.,
O

B

o "-*’"‘"""""’"’"""‘""{
N . AV AR IR TN

R e e

Sl Sl Wl st gl A b B LIMCIACEE AN AN AL AN SN L gl a0 gt gt b ot a0d oG oBR-JAR o bl PRIV oA M PR it SR it LR LT it ie® gt Bt B Sl i et sl et

.9

..:-:

o The jeep outer shell 1s built by drst drawing ine fower main body followed
' by the cabin. This drawing order causes the upper cabin portion of the jeep to paint over
_\:—‘ the lower body ot the jeep when viewed trom above. The tires and lights required a
< special drawing onder when constructing the eep’s main lower body. A tire is a three-
. dimensional hlack o tagonal object that 1s translated, rotied wodd drawn over the nght or
:-:'j: left side of the jeep’s muamn bodyv. The three-dimensional body, when diavn in the order
N of nght side, nght ures, left side then left ures, created the same distortion when viewing
A the jeep from the nght stde as did the tracks of the tank (tigure 2-14 (a)). To hide this
- distortion, the color for the nght side of the jeep was made dark enough to blend in with
;“ the black ures (Figure 3-14 (b)), The headlights are drawn after the front part of the jeep
- to allow them to be seen trom only a forward view. Pach headlight s an eight sided
T _ , . o

o white filled polvgon that 1s translated and rotated into a position on top of the tront part
&2

of the jeep. The <ame procedure 1s used for the tallights drawn on the back of the jeep.

;: — - e e

'y

-

N

o

!

.:\

o a b.

Frgure 3-14. Jeep Tire Drawing Under

‘ ‘
%
i o . L N o) L
1al

o
AN
’\-:

N 52

e

.

~

N . - - . .

i -~ O

¥ a &

[alaf el

s
et

~ s

Ll
f
R

ALY B,

3
v

Pl
3

D S

"'l.l‘l'l
PLALIS o 5

.
.

The jeep cabin had to be designed to allow views from both inside and
outside the cabin. This problem was solved by breaking the jeep cabin into two separate
parts. The inside part of the cabin is constructed of black polygons, all drawn using
backface removal, to only allow them to be seen from the inside looking out (Figure 3-15
(a)). The outside of the cabin is then drawn at slightly larger dimensions so that it paints
over the cabin inside. The result 1s a cabin that is not distorted when viewed from either
the outside or inside (Figure 3-15(b)). All of these techniques create a three-dimensional
light shaded jeep object, that can be viewed from another vehicle or a missile (Figure

3-16).

Figure 3-15. Jeep Cabin Drawing Order

S3

ey .
N
e

{0)

W ‘v"v'_“r,'r:v-,,rT
\\‘.\'’\-.“u = - T =
ﬁ:x.r\.'\.r\r\.,_. A ‘n ¢ '

.\ l‘---f-f JN/I‘! Iltl l..n. y (]
. C A Fd
.:Oﬁ_rf..r.......

-
rrS
thsnh

" "y

K
s

£ 84
Ja e te e

»"a

r
£ s

J".x,"v"‘
PR

-

& & . v
N @ e

3. Truck

The truck 1s the most complicated three-dimensional object drawn in this
study, consisting of seven parts: engine, cabin nside and outside, trailer, headlights,

taillights and tires (Figure 3-17). The drawing of all these parts 1s ordered.

Cabin Outside
Trailer

|
| |
{
' l
Cabin Inside

3 Taillights

Headlights Q

Figure 3-17. Truck Parts

55

"

2
s Yo fa i

»

LA

.

7 A
LN R Y T '.
o \a. LA

o a

@t
LN A)

. %
oo

v

A PRl 2
f-'/l:‘.’('."ﬂ..'\'-f, .‘

V@

P ST Y

.
AL\
)

Vol

COCIU NN
K

~

RACA AT A A ks et ek il ek Sl v o AN S Al At vl G uad 4h an 08 B4R 4 n Sea Ahe lrd ie aid oia sheiaacaan-aly LAl i -ohatfnt aar g ok St gav |

The drawing order for the engine, cabin and trailer has to be done in such a marner as to
display an undistorted view frora both the front and top of the truck. This was achieved
by first drawing the truck’s trailer front, then the truck’s engine and cabin (Figure 3-18).
The cabin and engine parts paint over the truck’s trailer when viewed from a front aspect,
and the cabin paints over the engine when viewed from above. The lights and cabin were

drawn in exactly the same manner discussed above for the jeep.

Front of Traller

Cabin

Engine

Figure 3-18. Engine, Cabin and Trailer Drawing Order

56

PR TR R T A PN T SN S
> *-'-'.ﬁ_. -~ N \‘, A

e mmtn s s
SRRy A AN
3 s . 0 i)

The trailer and tire parts required some additional drawing techniques not
previously discussed. There are six tires used in drawing the truck, two front tires and
four rear tires. The tire is the same one used for the jeep. Each front tire is rotated,
’ translated and drawn after its respective side of the engine is drawn. The rear tire sets are
also drawn after their respective sides of the trailer (Figure 3-19).

To eliminate the distortion of the inside sections of the tire that show
through the right side of the trailer and engine, the color of the right side of the truck was
selected to blend with the tires. An additional drawing distortion also occurs due to the
trailer being drawn after the cabin. The right wheels paint over the left side of the engine
when the truck is viewed from the left side (Figure 3-20(a)). This distortion was
eliminated by drawing polygons over the distorted view after the right rear tires were
drawn (Figure 3-20 (b)). All of these techniques create a three-dimensional light shaded

truck object that can be viewed from another vehicle or a missile (Figure 3-21).

Figure 3-19. Truck Tire Drawing Order

57

\"‘w"\.'\.‘ .~

> - Ny T T N T T T LN e N T T N L W T N
51‘?.'1“-..‘111".‘0-..1-41.' "m..)i‘;_.). . YRV TYWRY " A ANy SR

58

Figure 3-20. Truck Tire Special Drawing Order

AR 2, et R L

K e’ ptel . e ol s e e e e

Py % % S0 e T YW 2 e e e e LI 1] Yy Yoy or e e

Iy -\ 10 [LA . P LN I O T T T WAL IS ..

AP -‘..._..\.-.._ Hhhh AR N ! RIS R A A UL L AT A

J RARAIRR I T Y I L e e .

A PRI ..-f. Y TR RN

- N R AR e e

y_3_a a X K
NS

MR M e o et el i et Bt et Bt B e Al SR B B A A & D W e Sanad - ho~

0

P

1o
Vs

J:')ﬁ ‘

2

Figure 3 21 Truck Fal Protic

gy

A T T L N
I - L] - i
o w;xﬁ.s;mﬁm@:‘

AR A S AR A el Sl Al Sl)

Y

ENCAES

.
o
Y

v
v
L)
]
.
-
-

,"
-

- -

e e
PIRCI I
,

Pt i

Phad

5. 8

- @'
,

[y

Ny

PR

»T .

.

P

4. Missile
The missile is a four-sided three-dimensional rectangular volume with a
nose cap and smoke trail (Figure 3-22). The missile is a simple object due to the spced at
which it travels in the viewing volume. At speeds of greater than two hundred knots, the
missile usually appears as just a blur on the screen. No special drawing techniques were
implemented to create the missile object. The main body of the missile is drawn first,
followed by the nose cap and smoke trail. A full profile view of the missile, in a static

position is shown in Figure 3-23.

Smoke Trall

Nose
@ Body

Figure 3-22. Missile Parts

60

8

H

L
&
B

e

’
1

Nicsile Fad Pro

. -, s

-V LI . -- ‘~l

Y]

R I
.I-nvnvlv.'

T LA Sl LS Gl S SO A I I AV = drie

LAV R

LS

Y.

D. TARGET ANIMATION

T -' 0 .
.
A

Target objects are built during program initialization. After the objects have been
constructed, they are animated to fit in the proper orientation on the terrain. For
example, a vehicle object’s course and speed are used to redraw the vehicle each frame,
at a distance proportional to the speed it would have travelled in the time it takes to
refresh the screen. In addition to the speed and direction, a vehicle must be inclined to
go up or down a hill, and ulted to go along a banked surface of a hill. The techniques
used to animate and draw a target object on the terrain in real-time are performed in the
display loop, after the targets’ speed and direction parameters have been initialized. The
algorithms used to perform these techniques are discussed in the following sections.

1. Initialization

The moving vehicle simulator uses two data structures to manage the
correct display of vehicles in the scene. A linked list of vehicle definition data is created
before the display loop begins, and is updated at each pass through the loop. Figure 3-24
depicts this structure. All of the information needed to transform a vehicle object to the
correct position and orientation on the terrain is contained in the corresponding record in
the linked list. Before the display loop begins, one graphical object is created for each
type of vehicle. The drawing commands in this one object are then used to draw every
vehicle of that rype, instead of repeatedly adding drawing commands to existing objec’s,
as was previously done. This technique alleviates the need for deleting and creating
vehicle objects and improves the simulator frame update rate. The second data structure
is used to solve the hidden surface removal problem. In order to use the painter’s

algorithm, the connection between grid squares and vehicles present in a grid square was

62

L ‘ " - - .0
-~ ,f - A .
n"l Py 'J.I-A»'J.,.AJ.A‘

.\ ".l \n‘ﬁ .
.1,.-r\~: .(- , i

.
\ .
¢

AR S MSRASAL PR Sl i |

typedef struct vehi«cle {
short t VEHICLE TYPE
float x X TRANSLATION
float vy Y THRANSLATION
float =z Z TRANSLATION
short tilt ROTATION ABOUT X AXIS
float ang ROTATION ABOUT Y AXIS
short 1inc RUTATION ABOUT Z AX1S
short gridx X CRID VEHICLE IS DRAWN IN
short gridz Z GRID VEHICLE IS DRAWN 1IN
float wvel VELOCITY IN METERS PER SECOND
float «cse COMPASS COURSE IN DEGREES
float dist DISTANCE FROM DRIVEN VEHICLE
short hit FLAG INDICATING MISSILE HIT
float sx SCREEN COORDINATES WHERE ICON
float sy SHOULD BE DRAWN ON CONTOUR MAP
short 1 ARRAY INDEX FOR COMPATIBILTY WITH
struct vehicle ORIGINAL FOG-M SIMULATOR
~next POINTER TO NEXT RECORD IN THE LIST
} Vehicle
"vehlist"
A [—— - e - 1
Figure 3 24 Vehicle De tyon Data linked List

PRI Sy e o N e e i s o o aed®, e R S T AT TR S et T - j
L (LR RTREN RS RN NN " o . .x\' &- s

L4 . .
Al e
' Ve

]

T
RN N ®

. l. .l. ." } ,"(..":‘. »

7 N ~
-
11
L

-

R ~
S
I IR T I
PRI T B A
PR AN

T Te e
AR

3
b I

. e |
|1, PR

' el e T

e a ety a

PR A A
P ..

J)
T v ¥
.

Y
f‘ .""f“ ‘(‘_ ’,

Ao

e ‘-. ‘e

A

maintained. A single two-dimensional array is created, with each element corresponding
to a gnid square, and with each element containing : list of pointers to records in the
vehicle definition list. An element vehgrid{Z][X] in this array has pointers to definition
data for only those vehicles that should be drawn immediately after grid square Z,X is
drawn. These individual lists are maintained in sorted depth order, thus solving the
hidden surface nroblem. An example is given in Figure 3-25. Four vehicles have been
defined. creating the linked list vehlist of four vehicle definition data records. The
vehicles are situated in gnid squares Z,X and Z,X+2, in the arrangement shown. A
reference point is required for depth sorting the vehicles before the vehgrid data structure
can be created. This reference point is the position of the driven vehicle selected by the
simulator operator, in this case vehicle 'B’. The linked list for vehgrid{Z][X] contains
first a dummy node, and then pointers to vehicles A’ and "C’ that appear in grid square
Z,X. Each pointer is an address of a vehicle record in the vehlist data structure. Since
vehicle "A’ is further tfrom the driven vehicle than vehicle 'C’ in this example, it appears
first in the list. The linked list for vehgrid{Z]{X+2] is similar, with vehicle D’ further
from vehicle 'B’. Drawing vehicles in a list correctly with respect to depth can be
performed by traversing the linked list from its head, performing the appropriaie
transformations obtained from the definition data pointed to by the current node, then
actually drawing the vehicle object. Objects are drawn with hidden surfaces correctly
obscured if the list is maintained in a depth sorted order. A discussion of how vehicles
are drawn can be found in the Chapter III section describing function display terrain().

A discussion of how the vehgrid array is maintained is also found in Chapter I11.

64

r Ot Aol oh ok St 8% Al

grid square Z,X grid square 7Z,X+2

8] |° 4
N\

vehicle driven
by simulator operator

g D = C " B R s

b

"vehlist!" data structure

vehgrid [Z] [X]

o
-

vehgrid (2] [X+2] I

"vehgrid" data structure

Figure 3-25 Vehicle Grid Array

Bk el 2t & FrEru vt vvIoaw T ooy Wt

=y an ad0-ard ol geta it Ank il

e a2 At et Ak A
.

2. Display Loop
All the funcnons used 10 draw the vehicles on the terrain are performed in

the display loop. The display loop consists of the following six functions:

read_controls():

read operator conwols to update driven vehicle parameters
view_bounds():

make field-of-view calculations for the driven vehicle
update_veh pos():

update positons of all vehicles on the terrain map
update_vehicle_grid():

select the gnd in which each vehicle should be drawn
update_look_pos():

update viewing orientation of the driven vehicle operator
display terrain():

draw terrain map and target objects on the display screen

The actual display loop code consists of calls to the functiony in the order shown. Each
pass through the display loop represents a single frame of animation. All of the functions
are optimized tn produce a frame rate that simulates a real-time display. Each one of
these functions are discussed in detail in the following paragraphs.

a. Read Operator Controls

Function read controlst) (Figure 3-26) allows the operator to

interact with the program in real-time. The operator controls the driven vehicle by
entering a course and speed, changing the viewing direction and changing the
magnification of the scene viewed from the vehicle. All of these parameters are
controlled by using either a mouse button or the dial box. There are eight knobs on the
dial box that can be iniualized and used as parameters for any graphics process. Five of
these dials are used to control vehicle speed and course, driver tilt and line-of-sight look

directions, and a color or black and white display (Figure 3-27).

66

- - ~ . M AT
. .t

LI S A . AT LY
MY " i . - -
PRV S

g e R O
N '.F‘\-.‘A .F"J‘T.J T‘J‘.‘J‘:ﬂr - W .._KL_’(‘

' . . . A A A Sadh ol Gal Sall ah salh Suld e Sad Ackied dall sai sl sul wul ain - !'W
.- e i
s

~ .
- #inciude e
=
~ read conirisedrey o i e an 0 ckaiey o
.,‘ i Boolean *grevs fauine
'~:- oat *ube >l lone M s adee
R t:-’ short *tov,
T i
_":- cxtern Monnie s neco Foenpes v e grn cn oincle o
K- Roat delie sedey Dty = 7 it s,
{
= 2 modse oeeog oo st edse beiton b Zoom out Yy
if (etbarton Mol sE D aa Loyahutioe MOUSE)0

. oy = (%o < 180« DEETARON T Y186 oy - DELTAFOV,

if igethutton, VIO SEr s Toredbernon LA S)

L *foy = ("toy - TSH R A TON L A8 sov - DELTAFOV,
v

NG /Of DIALS toadvsrnd acowe thie soone o Bk and While usiag a
":t grey scdie wolor same ©

s i (*greys = petvabvat o iAoy

*ereye = Pprevs,
setvalvaiori DAL “orevsih iy
colomanperey s e v S

!
‘.
= *ult = DTOR * ¢ vsluaion DAL T TSENS /™ tlt head up and down */
- /* Change the speed usimg DIAT 2 {f the speed 3 aot zero read the course
B - from DIALD */

9 driven->vel = (floatp 2 tvaluator(DIALY 7 SPEEDSENS);
if(dnven->vel '= 0y ¢

driven->cse = (fleatigervaluatortDIALYY 7 DIRSENS;

deltacsedeg= dnven >cse - laswsedey:
if (driven->cse >= W |

- driven->cse = 2600 seivaluator DIATO Gntddriven->ose* DIRSENS),
- (NGO DIRSENS ontd 720*DIRSENS by,

® }
-t else if (dnven-»Cse < Q)
drven-sose #= 3500, seivaliwor(DAL O ontidriven->cse *DIRSENS),
O DIRSENS ani T20*DIRSENS))

-)
i)
® el deltacsedeg -~

'

craure CU6 Roadimg Opergior ©ontrols

»
L4
-8
re
«
r
1
v
r
¥
(3

T)
-

S\
b
’ .
A
l\ LY
i
3
B
D "._~’:
g if(deltacsedeg '= 0) (
e *lookdeg= *lookdeg + dellacsedeg;
T if(*lookdeg >= 360.0) {
ro *lookdeg -= 360.0; setvaluator(DIAL Y, (int)(*lookdeg* DIRSENS),
(int)(-360* DIRSENS), (int)}(720*DIRSENS));
o]
else if(*lookdeg < 0.0) {
), *lookdeg += 360.0; setvaluator(DIAL 1,(int)(*lookdeg* DIRSENS),
i i (int)(-360* DIRSENS), (int)}(720*DIRSENS));
)
_~-7-‘\- else setvaluator(DIAL 1, (int)(*lookdeg* DIRSENS) (int)(-360* DIRSENS),
e (nt)(720* DIRSENS)),
) "'.'\ }
. else {
p setvaluator(DIALO,(int)(1astcsedeg* DIRSENS), (int)(-360* DIRSENS),
o (int)(720*DIRSENS));
*lookdeg = (float)getvaluator{ DIAL1) / DIRSENS:
St if (*lookdeg >= 360.0) |
P, *lookdeg -= 360.0; setvaluator(DIAL ,(int)(*lookdeg* DIRSENS),
LS (int)(-360* DIRSENS), (int)(720* DIRSENS));
[}
ANS if (*lookdeg < 0.0) {
o *lookdeg += 360.0;
2 setvaluator(DIALL, (int)(*lookdeg* DIRSENS),(int)(-360* DIRSENS),
:i (1int){720*DIRSENS));
s'. }
i J
. *lookang=(*lookdeg <= %0.0)? DTOR*(90.0- *lookdeg): DTOR*(450.0- *lookdeg);
! dniven->ang = (driven->cse <= 90.0) ? DTOR*(90.0 - driven->cse)
- : DTOR*(450.0- driven->¢se);
! }
1 Figure 3-26 (Continued). Reading Operator Controls
J
L
g
o~
g
T
§ ,[-“.
‘o
? ’.:»
. @.
o
b "-_
B
-
1 B
Ko
K2
0) 8
T
Y
.
®
-
Y
.. o
. .j.\','-:,\') },-.}-" '.(' » N ™ h ‘:,,'\'.',,-:_‘ ~, ‘ Y -: e N T G T T T =.;_ .:,:."_-.__\',,-“: TN PR LA

'“ - o - g vy " sadimanns MR AL Nl Wt e Sk Bag S0 A B A B AT S0 ann AAS-sanaad ales . s da "
-

"
L
)
=
~.'-~\
W
-.“‘-‘
¢
e &
o &
O titt _ color
‘ -~ -
) - spead
\ -
'_*~,‘,11-f course view
-
b
e
A._
o Figure 3-27. Dial Box
o The use of the dial box requires initializing each dial to a
,-_".- . . L . . .
“ parameter, with an upper and lower bounds and a sensitivity setting if desired

Pl
w s

(setvaluator(DIAL# parameter,lower bound,upper bound sensitivity)).

50K

-;i; The dial outputs a parameter by the function getvaluator(DIAL#).

E:-; Two mouse buttons are used to control the apparent magnification
é:‘ of the viewing volume. For every cycle of the display loop that the mouse button is

o

,',E.Eé depressed, the field-of-view is changed five degrees. Depending on the mouse button
| .:.'E that is depressed, the ficld-of-view is either increased or decreased. The mouse button is
... sampled by the function getbutton(MOUSE#).

J These controls allow the operator to drive a vehicle over any
": portion of the terrain, selecting any view out of the vehicle. These valuator inputs are

- s
P X 4

constrained. The field-of-view is limited to fifty-five degrees to minimize the number of

69

’ |
A A
g LAY ®

.“ =

.-

Caks

e

Ny e N S e e A e, R P PR I IR AN
" X . .'.'\J'_'-’..-I'_‘J') ~“?__)_'<'_..{'_‘. _‘-‘,‘ HJ\J‘\J’.‘” ¥ \J','-I'\-'\u' -f\ \J'~ X

RaXaleBhK)

polygons that have to be drawn. In addition, the driven vehicle's course cannot be
L changed if the vehicle is not moving. These constraints are discussed in the section
S upvehpos() and are implemented to provide more realistic moving vehicle dynamics.

b. Define the Viewing Boundary

\ Function view_bounds() (Figure 3-28) uses the field-of-view and
EOK
~::} view direction, entered by the operator in read _controls(), to compute the intersection of
\ the right and left sides of the field-of-view with the terrain map boundary (Figure 3-29).
Ll
) These nght (grx,grz) and left (glx,glz) coordinates are used by the display terrain()
.‘-'_'.:.- function to draw only the polygons that are in the field-of-view.
2
hd
S
(view_bounds(lookang fov.glx.glz grx.grz)
Ny Coord *glx,*glz *grx,*grz;
ST float lookang;
N short fov;
AR (
i extem Vehicle *driven; /* pointer to the driven vehicle */

float halffov = DTOR*(float)(fov+50)/20.0; /* half of the field-of-view */
float viewr = lookang-halffov; /* right half of field-of-view */
float viewl = lookang+halffov; /* left half of field-of-view */

S u X

f
I,

- /* lef1 intersection points of the field-of-view and map boundary */
intersection(driven->x driven->z viewl, & *glx, &*glz);

/* nght intersection points of the field-of-view and map boundary */
intersection(driven->x driven->z,viewr, & *grx & *grz);

<.
~4'_
‘P-
* .
I-
*a
v
- '.~

}
o Figure 3-28. Define the Viewing Boundaries
' ¥
'Y .
=y 70
.
V.-
.
v \-:
o
1y e
g
L
e
."_:I
o AT R A S .-".' IEAERAT : -r vl J‘ - O 'I"J‘ \-"J" > PRI ATAI AT M P P P
. e e e o L T e e gt el S P e K e)

ESullh * B AP A SRRt ol o "1

%

PO A I i A N

T

nd

ha "Rl " Pl Wil Sl ARE Yak ¥

)
h"
o
..‘
2

R
\vn. xv\

Contour Grid Map

gix,glz

look angle

grx,grz

11
Field of view |

.....1..¢

Figure 3-29. Viewbounds

RN A,
'(~‘

71

-\'u'l
OO

-,

Y
&
-

o

RGN
<

0o

¥

L

-
-
-

LADAD

AN,

A

“‘. <y
[847
o l‘,. (2

""n"\

)‘t':. g

N
“
N
[8
9
%
-
»

>

“y
R

+@

) aes 08 B .4 s A Ae A Sa Ala bie 2 iie Ade ket AiecAln-iinbiei

c. Update the Vehicle Positions
Function update veh pos() (Figure 3-30) updates the position and
orientation of all the vehicles in the vehicle list constructed during the initialization

process. Each vehicle in the list has the following attributes:

X, y, Z positions

velocity

course

type (TANK, TRUCK, JEEP)
distance from the dniven vehicle
tilt angle

incline angle

hit by a missile (WRECK)

The values of these attributes maintain a vehicle’s current location on the terrain map, its
speed and course. The algorithms used to compute these attributes are discussed below.

(1) Speed and Direction. The vehicle’s speed is implemented by

translating it across the terrain at a rate proportional to its velocity. To compute the new
translation position, the old position is added to the distance the vehicle travels in one
frame. The distance the vehicle has travelled is first calculated.

distance = velocity * frame rate
Then the new positions are calculated by taking the sine and cosine of the course

direction times the velocity and adding it to the old position.

x_newpos = x_oldpos + cos(course) * distance
z_newpos = z_oldpos - sin(course) * distance

The vehicle is then translated to the new coordinates (Figure 3-31). This translation also
animates the direction that the vehicle travels, since the new translation position was

denved using the vehicle’s course.

72

IS LSt L NV LA O
-- “ . . L

o Rafh Al fd

PR
o

'1 . ‘([_ L

VALY
LA

L
v
..

4,

ot

Ol ™™

[akd

G (4%

N .. ;\ n.. -" I“J

L
[

|
AL BANAAS

P T Tl Y
ateteteLt,

update_veh_pos(elapsedsec)
float elapsedsec: /M time to do one frame */

extern Vehicle *vehlist,*driven;
float gnd_level(),sincos();
extern Boolean stall;

Vehicle *temp;

float sine.cosine,distance;

float ax,ay.az; /* incline point courdinates */
float tx,ty,tz; /* tilt point coordinates */

temp=vehlist;

while(temp!=NULL) { /* calculate new x,y,z position on the terrain */
sine=sincos(temp->ang,&cosine);

distance= temp->ve! * elapsedsec; /* distance travelled in one frame */
lemp->x += cosine * distance; /* new x coordinate */

temp->z -= sine * distance; /* new z coordinate */

/* calculate incline x and z coordinates */
ax = tlemp->x + METERANDHALF *cosine;
az = temp->z + METERANDHALF *sincos(((temp->cse - 90.0) *DTOR),&cosinc);

/* calculate tilt x and z coordinates */

sine = sincos(temp->ang - HALFPI, &cosine);
tx = temp->x + METERANDHALF * cosine;
z = temp->z - METERANDHALF * sine;

/* compute tilt and incline y coordinates and add */
/* the height 10 raise the vehicle above ground */
switch(temp->t) {
case TANKS : temp->y = gnd_level(temp->x,-temp->z) + TANKGNDHT;
ay = gnd_level(ax,-az) + TANKGNDHT;
ty = gnd_level(tx,-z) + TANKGNDHT;
break;
case TRUCKS: temp->y = gnd_level(temp->x,-temp->z) + TRUCKGNDHT;
ay = gnd_level(ax,-az) + TRUCKGNDHT;
ty = gnd_level(tx,-tz) + TRUCKGNDHT;
break;
case JEEPS : temp->y = gnd_level(temp->x,-temp->z) + JEEPGNDHT;
ay = gnd_level(ax,-az) + JEEPGNDHT;
ty =: gnd_level(tx,-tz) + JEEPGNDHT;
break,
)
emp->inc = (short)(asin((ay - temp->y)/METERANDHALF) * RTOD) * 10;
temp->tilt = -(short)}asin((ty - temp->y)/METERANDHALF) * RTOD) * 10;

Figure 3-30. Update Vehicle Positions

}J})&.“':'A 7,

hY

j 20l
"-,"xw.‘.;

Tho T e e LT T TR e e T LT e e T e LR L T e e e
> .r_ - .-__\.'__.r\.f\), - _“N.l-\._.'__-f‘!f "'.,-.'

73

Y

T A I N R T D e N S T A L
PO AL AL .-. i
L

Ll e R AR AR VR 4 s

AP TR

Y " ‘J‘J"" ALY V‘
R o ‘ S

. W LW .5 ¥ <7 7

o aee aeh aede e ol st e bk arill et gne gul aS i ghl gta gt gl A0 ACA A & S 4

Mt A et ah e S e kAt Snih ik St i i
e x g n

l switch(temp->t) { /* um vehicle away from steep hills */
. case TANKS : if (temp->inc >80) /* 8 degrees for a tank */
2P slowturn(&temp->ang); / tum vehicle 10 degrees*/
\-" : break;

case TRUCKS: if (temp->inc >100) /* 10 degrees for a truck */
slowtumn{&temp->ang)./* turn vehicle 10 degrees®/
break;
case JEEPS f (temp->inc >150) /* 1S degrees for a jeep ¥/
slowtum(&temp->ang); /* tum vehicle 10 degrees*/
break;
)
stall = FALSE;
switch(driven->t) { /* stall the vehicle if the hill is oo steep */
case TANKS : if(dnven->inc > 80) /* 8 degrees for a tank */
stall = TRUE; break;
case TRUCKS: if(dniven->inc > 100) / 10 degrees for a truck */
stall = TRUE; break;
case JEEPS : if(driven->inc > 150) /* 15 degrees for a jeep */
stall = TRUE, break:
]
/* if a vehicle reaches within 200 meters of map boundary tumn it around */
if((temp->x >(TENKM - TWOTENKM))li(temp->x < TWOTENKM)){
slowturn(& temp->ang); /* tum vehicle 10 degrees*/
if (‘wmp == driven) /* if the driven vehicle stall it until it backs up */
stall = TRUE;
}
else if((temp->z < -(TENKM - TWOTENKM)) Il (temp->z > -TWOTENKM)){
slowturn(& temp->ang); /* turn vehicle 10 degrees*/
if (lemp == dniven)
stail = TRUE,;
}
/* if dnven vehicle 1s stalled set the speed to zero until it backs up */
if ((stall == TRUE)& & (driven-> vel >= 0.0)){
setvaluator(DIAL2, 0 ,UPPERSPEEDBD LOWERSPEEDBD);
driven-> vel = 0.0
}
temp=temp->next; /* goto the next vehicle in the list */
}
temp=vehlist;
while(temp!=NULL) (/* calculate distance from the driven vehicle */
temp->dist=(float)hypot((long float)(driven->x - temp->x),
hypot((long float)(driven->y - temp->y),
(long float)(driven->z - temp->z)));

lemp=temp->next;
}
J

Figure 3-30 (Continued). Update Vehicle Positions

74

A A A PCRALERUN
" N T) m"n_'f}_v: df‘a.'(.l.!'. e

LA Y A i Oa- A’ A 34 - r - <

ol

'. .- ‘. ‘e

..'- W - ;PSS

." IA. ‘tl .Ps

P ——
oA

AL N
|’lll‘ .ll

ZT distance = velocity * frame rate

.'.";’)}.‘.’

T

I‘I
LA

new pos

distance

AN

[A

—

sin{course) * dlistance

'R
IRt

old pos

ycos(course) * distance

4

N

Nkl
.

LN N
v

* s

e
.

,l‘ “ l'
Y R ey i.

LA

Figure 3-31. Vehicle Speed

L@ U @

L 4
F

s o

78

'.-’I‘

(g L
".'\\\'\. __"»

-f',‘l‘ ,_ ,‘.-i',,.

(‘;.(‘.c OO) —f.;"-
Ot O S

o NS R
[A

i o T
A "y i Xa ~

A N
o X s

VL AT RS S AN
.B" 5 L)] ASLAS RSN B e 00 e M

4.,.,_.‘._'. CAEAES
‘-‘,\}5:&},‘ et KT

Y
Pakal'd

OGP
L

All the vehicles head in their preset direction until they reach a map
boun~ary or a steep hill. If a vehicle is not being driven and reaches a contour map
boundary, it turns to the left, back into the center of the map by the function slowmurn().
This function adds ten degrees to the vehicle’s course each frame that it is within the two
tenths of a kilometer of the grid map’s boundary.

(2) Hill Traversal. All the vehicles encounter a hill at some time while
traversing the terrain. To display the view of the vehicle object on a hill, the object must
be oriented in both the incline and tilt directions. Two angles inc and rilr are computed
by defining points one and a half meters away from the center of the vehicle’s rotational

axis. The x, y and z coordinates of this point are then calculated.

tx = temp->x + METERANDHALF * cos(course);
1z = temp->z - METERANDHAL™ * sin(course),;
ty = gnd level(tx,-tz) + TANKGNDHT,

The corresponding incline and tilt angles are computed by taking the difference (deltay)
between the rotational axis y position and the points (ty or ay) y position and then calling

the arcsine function (Figure 3-32).

inc = arcsin(delitay METERANDHALF),
tilt = - arcsin(deltay/METERANDHALF),

Some of the terrain is too steep for a vehicle to traverse. The vehicle
should either stall or turn to a less steep direction when attempting to go up a steep hill.
If a vehicle's incline angle reaches a steepness threshold, the vehicle is turned to the left
ten degrees for each frame of motion. This is accomplished by a call to slowturn(),
which adds ten degrees to the vehicle's course. As long as the vehicle's incline angle is

greater than the threshold, it keeps turning to the left. The driven vehicle is not turned

76

(.- R I R I e e K P A e
. .

-

(ax,ay,az)

delta y
Incline |

Incline = arcsin (deltay/1.5);

(tx,ty,tz)

s deita y
>

tilt = arcsin (deltay/1.5);

P

1 i
@y

Ga
R N
PN
4l

R
S

.

2z

Ed
WS

Ly

1

> @

'.llf'\..
Al
SN SNLA

“x
L P S

Figure 3-32. Incline and Tilt Computation

-

r el
:I:l fy %

S

77

L3
~
~
LY
-

A

e -
VERURACS SN
.

R AT Y R A
TSR S A VR AR

{.-{'*!’.- ‘J‘f'#'%‘ ™ ‘\-‘r’ » \.i
RS

Sl T WL T L. Y.V . ¥ "
WP ra 8 ta ea gen ate am s te el el i taf el tak Nl bl fak il Al dod Aafl Selie M
Wmm-“ PP, e

./'\'.'. ‘.'._‘. lv‘.-

.
¢ .
LA

LIS

. o,
el
v

Sl

.
I

Y

PR w
S0 % LSS

e r
»
i
_*

|
S

since the driver should be able to recognize and avoid steep hills. If the dnven vehicle
exceeds the incline threshold, it stalls and its speed is set to zero. The driven vehicle can
then only be removed from the stalled condition by backing up and turning away from
the steep hill, until the incline angle is less than the threshold.

Function update ven pos() is implemented using simple logic and
mathematics. To reduce the time required to perform trigonometric functions, all the
values for arcsine, sine and cosine are obtained by accessing an array consisting of 3600
entries. Once all the vehicle parameters have been computed, each vehicle must be
assigned to a specific grid square.

d. Updating the Vehicle Grid Armray

Function update_vehicle grid() in the display loop manipulates the
vehgrid array for correct vehicle object hidden surface removal (Figure 3-33). Recall
that the vehyrid array has one element for each grid square, and that each element of the
array is essentially a list of vehicles that should be drawn after the grid square is drawn.
Two characteristics of this data structure are examined at each pass through the display
loop. The pointers in a vehgrid array element linked list are sorted ir order of distance
from the driven vehicle to maintain correct vehicle drawing order within that grid square.
The routine also determines which particular grid square a vehicle should be drawn after
(which list it should be in) based on its proximity to a gnd square edge, and the direction
of the line-of-sight. This allows a vehicle to be drawn only once, regardless of its
location on the terrain.

A vehicle situated near the center of a grid square is always drawn

in the grid square it occupies. A vehicle near a grid square edge, however, can be drawn

78

-

- S AT I S
PP LT _\'-_ TR L S A
‘.'r!-f " ‘vf\ n I e

A L N

sty .r'.‘yur. N

§ '. l‘
5 1.' ?)/',.f: M

LA
L)
[P

[I
[T R |
P)

45 .

PRI
LY ‘n:ll
5 Sty

I.".‘.(’.'-‘-\'l.

L)

AR ."'..‘ v

Lo v
« Y
Sl \"5 :

L 4
>

N
PPN

R AR
ettt
¢t A
S e

. Y ™ 4
. {-‘ll,(l.:; U

[
2

hERN s

N
. i
L S W Y 3 LRSS

.
x

,
LN, '
A

B v .

'

#define WEST Ox8
#define EAST Ox4
#define SOUTH 0x2
#define NORTH Ox1

update_vehicle_gnd(lookang)
float lookang;

{
extern Gridnode *vehgrid[NUMZGRIDS[[NUMXGRIDS};
extern Vehicle *vehlist, *driven;

Vehicle *lemp;
short ov,getoverlap() ,quadrant,newxgrid,newzgrid,oldxgrid,oldzgnd;
float x,z;

quadrant = (short)(lookang/HALFPI); /* quadrant driver is looking in. */

temp=vehlist; /* head of the definition data list. */
while(temp!=NULL) { /* for each vehicle in the list do... */

x = (lemp->x); /* get vehicle’s current x position */

z = -(lemp->z); fid ...and z position */

oldxgrid= temp->gndx; /* get grid square indices vehicle was */
oldzgrid= temp->gndz; f* last drawn in. */
newxgrid=(short)(x/TENTHKM); /* get grid square indices of vehicle’s */
newzgnid=(short)(z/TENTHKM); /* current position. ./

ov = getoverlap(temp->t,z x,newzgrid,newxgrid);

switch(quadrant) {

case 0: if(ov & WEST) newxgrid--; /* draw vehicle 1 grid square to west */
if(ov & SOUTH) newzgrid--; /* ...1 grid square to south */
break;

case 1: if(ov & EAST) newxgnd++; /* ..etc. */
if(ov & SOUTH) newzgrid--;
break;

case 2: if(ov & EAST) newxgrid++;
if(ov & NORTH) newzgrid++;
break;

case 3: if(ov & WEST) newxgrid--;
if(ov & NORTH) newzgrid++;

}

assign_grid(temp,oldxgrid,oldzgrid,newxgrid,newzgrid); /* move the node */
temp->gridx=new xgrid, /* update definition data record to reflect */
temp->gridz=newzgrid; f* which grid square this vehicle is now */
temp=temp->next; f* drawn in */

)

}

Figure 3-33. Determining Where to Draw a Vehicle

\'\-'J\}f\l'\"‘-

79

w o, DS P > u_-....<._ . .

AR T SR
,'\ . A

CAC AT, TR
'y \whh\qhﬁ..uz_. -_.\4‘\;‘7_.'74_:&.

Y

-r TR
-_.-A

-

N

/
4.!
&

T Tm e Ny WO RT TN WWW' ¥
N R A . - - A - TEYETU =Y

X,

»
/
s Ny

-."'.'l.l.ll.

[N el
e
A ey 8ty
[R

in the grid square it occupies or in 2n adjacent one, depending on the line-of-sight.

l‘..l" .

Haht
Pt

!

h Update vehicle grid relies on the algorithm used in function display_terrain() when
P determining in which list to place a vehicle (Figure 3-41 page 91). Display _terrain()
draws terrain polygons and vehicle objects in a different order according to the direction
of the line-of-sight. For purposes of update vehicle grid() calculations, the line-of-sight
can be in one of four quadrants: the first quadrant extends from zero to one-half pi
radians counterclockwise (ninety to zero compass degrees), the second quadrant extends
from one-half pi to pi radians counterclockwise (zero to 270 compass degrees), and so on
- for the remaining two quadrants. Routine display terrain() itself checks for presence of
the line-of-sight in one of eight octants, with an octant being one-fourth pi radians
(forty-five degrees). Display terrain() drawing order is summarized in Table 3-1. An
example with a line-of-sight in the first quadrant is given in Figure 3-34. Figure 3-43

{ (page 95) shows the eight octants applicable for display_terrain() calculations.

TABLE 3-1 DRAWING ORDER OF THE PAINTER’S ALGORITHM

Line-of-Sight angle @adram Drawing Order
0< LOS < 90 0 North to South, East to West
W< LOS <180 1 North to South, West to East
180< LOS <270 2 South to North, West to East
270< LOS <360 3 South to North, East to West

2 e .
et

Py
'

“RKLYy
.

P
5, 4,

A

LA ’.\‘.'
i * ! -. .‘ .. a
ity

g. A four bit "overlap” code is used to determine which edges a
vehicle is near. Figure 3-35 shows routine geroverlap() that determines the overlap
value. The appropriate bit of the overlap code is set if a vehicle is close enough to a grid
y square edge that it might overlap the adjacent square. A vehicle's proximity to an edge is
obtained from the difference between its X and Z coordinates and those of the southwest

comer of the grid square it occupies. Values above or below certain thresholds indicate d

80

R S T RN
.-.-a.»:.r.-.-.r‘:i
AP R N R N G

. = g d
. ‘1_11..55:‘
F INCE AP B P

.
St Te ._: Vo
PR
LA SN 4 LR

L]
»
»

Yy .t
4

1
PR

il

v
St
PN R

3 I‘

.

.

4 ’ [N

| I

v
)
'y

[N

(llllll.ll‘l 1

| e
Y

Tt '.
e

AT
o, AL
7 s

First quadrant

4 0-90 degrees *

First octant
0-45 degrees

line-of-sight

T
{710
11
m
13
14
15|

——

f O\ ¥

Field of View

hl\\

L

number 3

L -

indicate drawing order

north to south, east to west

Figure 3-34 First Quadrant Example Drawing Order

81

CACRLTRS PR
J“x:\ NOP) .j:,§a-*:,\,.

B R A R o o ¥ S S

short getoverlap(iype, z, x, zgnd, xgnd)
short type, zgnd, xgnd;

Coord x, z;

{

float min, max, dx, dz;

short zgrid, xgrid, ov=0;

if(type==TANKS) min=4.82; /* how close the center of the vehicle is to */
f{type==TRUCKS) min=4.54, »* the west or south grid square edges when */
if(type==JEEPS) min=1.99; /* the vehicle begins to overlap the */

/™ the adjacent grid square. */
max = TENTHKM - min; /* same as above, for north and east edges. ¥/

dx = x - TENTHKM * (float)xgrid; /* dx = how close the vehicle actually */
dz = z - TENTHKM * (float)zgrid; /™ is to west edge of the grid square */
/* dz = how close to the south edge */

if(dx < mun) ov = WEST, /* vehicle overlaps the western gnd square */

f(dx > max) ov = EAST;, /* .. eastern grid square */
if(dz < min) ov = SOUTH, /* ... southem grid square */
if(dz > max) ov = NORTH; / ... northemn grid square */
return(ov);

)

Figure 3-35 Overlap Code Bits

some portion of the vehicle may overlap another grid square. These thresholds are

different for each venicle. The minimum threshold value for a tar ‘s 4.82 meters for
example, which corresponds to the diagonal distance from a tank center to one of its

comers. Threshold values are illustrated in Figure 3-36.

82

Ev-‘lr Ll e ¢ Bt o et Mg mes dnb S Sus Mes Bas A Sy Al B el Il Sl Aad Bed Safid AR B Sl Ak el Aol faoh St Sad Tk -Bdt 2k Bk A e Sl Al A A el e ek I et Rl Rk Rl el Y‘W

RN

V4

4 .82
4 .54
meters meters 1.99
meters
TANK TRUCK JEEP
dx = x1 - x0
dz =z1- 20

min ¢ dx ¢ max
min ¢ dz ¢ max

(x1,21)

N
B
jos
o)

e L

LA .

(AR N

[

“
a
N

R

Rt Tt

=
-
o)

o
A

P

Figure 3-36 Proximity to a Grid Square Edge

.-/'.:.n." . PR R .'_..‘. ‘.-‘.' ;.-_":_.-.. .h\.\ “i
M(J.MhaMJu-AM‘c-hx- PR RS AN .‘._.-.r.,r..v“.r - .r.

3 T
N
e
:jf-_ :‘_' Although a threshold is reached, a vehicle is drawn in the adjacent
-' square only if it is near certain edges. It is the drawing order of the painter’s algorithm
-«-:’Z_x: that determines these grid square edges. They are shown in Table 3-2 for each quadrant.
\:-
o TABLE 3-2
'; Quadrant | Grid Square Edge
ot 0 South, West
:j:_'.j- 1 South, East
N 2 North, East
Cd
Tl 3 North, West
t-‘:’; In update vehicle grid(), the result of a logical AND of the overlap code bits and a bit
representing one of the edges in Table 3-2 is used to determine the vehgrid list where a
;) vehicle is found. Both bits must be set for a vehicle to be moved from one list to another.
L
, _’t-j In Figure 3-37, the line-of-sight from the driven vehicle A’ is in the second quadrant.
AN
. ':‘:::: With this line-of-sight, vehicles near a southern or eastern grid square edge are drawn
_ after the adjacent grid square in that direction, instead of the grid square they occupy.
! h‘ £
'
j:'.'_’_ This is the case for vehicle B’ in Figure 3-37, near the southern edge. Since the
1 "'.’
b

painter’s algorithm draws grid square four after grid square three, the part of the vehicle

overlapping the southem grid square is overdrawn by grid square four if the vehicle is

PR

drawn after the grid square it occupies. To correctly draw the vehicle and both of the

¥ 4

e A

i
Y

grid squares it overlaps, the vehicle must be drawn after grid square four. Routine

-
4

¢t
¥
LA

e 3t
LR AR

update vehicle grid() and getoverlap() correctly determine the appropriate new vehgrid

indices for this technique of hidden surface removal.

@A
P

s
L3 L A
.'-.‘.'n'l“\"

.
[

Iy h
lfl"

.

Qv n@ee e
L. e

-
[4 4‘-"

23rd

B, L L T s o gy
.‘ - N,‘ ¢ .v," N

.....

L ool

O ¢, 30
iﬁf?.ﬁﬂ ;

- s | S
"'.2-'1

<
"

R

wiig

o ,
bl

& T W W TN R N,

LR U
w'-f‘f-l‘l’-(

. A A R Y Yy L N T o ™ T W W VW=~ Y= v 7y

line-of-sight vehicle is drawn in

in second quadrant " adjacent grid square if
\ near SOUTH or EAST edge |
| Rttt |
|
{
|
| |
| |
Y g2 |s
1 min |3 dz < n => overlap
M| B = SOUTH
A
2 4 6

Vehicle B’ is near SQUTH edge =>
draw it after grid square four

Figure 3-37 Drawing in an Adjacent Grid Square

The value obtained for the new Z and X grid indices is used by
routine assign_grid() to move nodes in the vehgrid lists to their correct location. This
routine consists of linked list management functions to search, remove and insert nodes

in the vehgrid lists. Nodes are always placed in a list in depth sorted order.

LS RO T R AR R T PR T 4
Mﬁ&mﬁm R e

oy %y |

An example clarfies the above discussion. Figure 3-38 shows the
situation for two vehicles, with vehicle A’ being driven. The upper arrangement shows
the vehicles at the beginning of one pass through the display loop. Vehicle "B’ is located
near enough to the center of grid square Z,X+1 that it does not overlap any adjacent
squares. The lower arrangement occurs after vehicle positions have been updated.
Vehicle "B’ is still located in grid square Z,X+1 but now overlaps the western edge.
Since the line-of-sight is in the first quadrant, vehicle 'B’ is drawn after grid square Z,X.
The node for vehicle 'B’ is moved from the vehgrid{Z][X+1] list to the vehgrid(Z][X]
list based on an overlap code of "WEST". Again, insertion into the new list is done with
the key being distance from the driven vehicle.

e. Updating the Viewing Orientation

Function update look pos() (Figure 3-39) computes the reference
point coordinates (px,py,pz) towards which the viewer is looking. The px and pz
coordinates are calculated by computing the look distance in the line of sight, then taking
the sine and cosine of the lookangle and adding the result to the viewer’s x and z
positions (Figure 3-40).

*px = driven->x + cosine(lookang) * lookdist
*pz = driven->z + sine (lookang) * lookdist

The distance the viewer is looking in the line-of-sight (lookdist) is calculated by taking a

deltay value and dividing it by the tangent of the tilt angle.
lookdist = deltay/tan(tilt)
The lookdist is then normalized to a value less than the maximum look distance

threshold. The py coordinate is calculated based on the viewer’s tilt angle. If the tilt

86

LI
Ry
y e,
B R Y

'

rx

Y
o
h\ -‘

p
s

‘
I3

L3S
s

- .
i r
e

]

PRt

LSS
"' "‘ 'l' .‘
Wl
et

(RN

.4‘
e

B
.
’
P
doat

a
¢ .
PR R RPN

.
e
R
Ve

..
L 1 A X

e @ T

ERNY 2NN B | . .

BAPL PR

o

BN@
atate L

T

L

NhN LA
Catit e

p

s Sey
en G

LI A 1 el 4
L A I S 3
oty

A

- .
»

]

o
BN

AT
.

IO A AN ATE A0S Akt LR A he et et at o Rt Sat Ak Skt ok Ba® Sl @ ¥

R R A W W Y W N W W W T TN TG T T Oy G Wy t‘!:"‘.'(."‘:"

line
of
sight

vehgrid
array

A

/OB
//

(2] [X]

F- >

(2] [X+1]

grid square Z,X

line
of
sight

(a)

vehgrid
array

i

—— —= | H

overlap = 0xO

(2] [X]

[2] [X+1]

I

(b)

I

¥
!

-4t

overlap = Ox8 (WEST)

Figure 3-38 Update Vehicle Grid Example

87

VAR

Do \\‘_‘,‘F_,-._,x}_,\‘\‘ ‘\

- ., - ~;i
.";:::s (-\

ol
A

lq'-
s M e
JL R

e

-~ g
wg X W L AP,
ity r‘_“i“"!‘:l '- I ..' .-, . 'N; .1:,

x
*

gL

AP

Yy

a
"‘

i

-

CRARES

@

}‘}a

o T

"::"-.'.l."_'

; '.s"o.

update_look_pos(lookang .tilt,px.py,pz)

float tiltlookang;

Coord *px,*py,*pz; /* reference coordinates */

{

extern Vehicle *driven, /* pointer o driven vehicle */

float lookdist, /* distance ahead of viewer */
float deltay; /* height of eye */
float sine,cosine,sincos();

/* compute distance ahead of vehicle we are viewing */
deliay = dnven->y - MIDELEYV;

if (tangent(tilt) == 0.0) lookdist = deltay / 0.01;
else lookdist = deltay / angent(tlt);

if (lookdist < 0.0) lookdist = -lookdist; /*take care of tangent sign */
if (lookdist > MAXLOOKDIST) lookdist= MAXLOOKDIST;

f* compute reference coordinate where viewer is looking */
sine=sincos(lookang,&cosinc); /* get sin & cos out of the array */
*px = dniven->x + cosine * lookdist;

*pz =driven->z - sine * lookdist;

if(tilt > 0.0) *py = 2.0 * driven->y;

else *py = 0.0;
}

Figure 3-39. Update the Look Position

()
'c.'l.

W

P

,\u-,,v -r- -.- .(‘ 'JI',\'J' .r <o .r,‘ .“.v'a ,“ " f.h-f o .r a .ﬂ - .q‘ :; 'Emfv,. }M

\“Wlw-wu‘vt-I'-'IWI'H'V'T"‘I'('I"I"H‘Y" Lk Salk -l Bl Sud eaihot

Ko

Yy O %
P4
l".{r‘.

n a4y L
A

A

¢ 7

3

3
r

RN
&P
AR AR

-

N

‘_.
A ol 23
N 0., ‘..". f

)
a_x_ 1 s,

. a . o
a b
aa
e r

.

L3

P]
£

. U
L N S

(Tl
e e ¢

5

PR

e T}

Yool S
l}“)‘.‘“.a -

L2 st Bk anth el Sk ot Al mad Sl meh And el Anh salh tulb Salb Ml ted il ik “Alie™Ale "Rl Aa' '-"“".T

(px,py,pz

sin(lookangle)

* |ookd|starﬁ

Figure 3-40. Calculating the Look Position

S T R Te e 2T e
> .r,\ " .\l_.-,‘.-..

A
f

89

RS T I P I R s
.r‘_.l-,_. {__-_'-"-f_‘.r\\d‘

)

R T T S T e T T A Y
PRt AT S AT I M N
A LA A kA a0 !

-_“ A W‘FW'WWWT'Y'"FTTVWWmeﬁmwvvvvv el ol ‘el sl tal el Sod Gl g L |
[
2
e
[
::: angle is above the horizon, py is set to look slightly above ground level. If the tilt angle
= is zero, the viewer is looking in the direction of the horizon and py is set to zero. The
\: reference point is required to define the line of sight for the function lookat(driven-
>x,driven->y,driven->z,px,py,pz,twist). This function specifies the viewpoint (driven-
\ >x,y,z) and the reference point (px,py,pz) along the line of sight. The twist angle rotates
.~
': the line of sight about the z axis. Once a viewing reference point is defined, the terrain
:\
:‘ ‘3. and vehicles can be drawn.
N
- f. Displaying the Terrain Map and Vehicles
,
. : Function display_terrain() draws the terrain map and vehicles in
- the viewing volume (Figure 3-41). The viewing volume line of sight, orientation and size
L)
:'_f are defined by the viewing transformations /lookat() and perspective(). The
Ijl" perspecnve(fov,aspect,near far) viewing transformation uses the field-of-view and near
“ and far clipping planes to define the viewing volume drawn (Figure 3-42). The aspect
- represents how far the viewer sees in the x direction as compared to the y. For example
,:-‘; an aspect of 3 means the viewer sees three times as far in the x direction as in y. The
lookat() viewing transformation was explained previously.
The screen is outlined in black with the sky colored blue and a
ground plane of green. Only a 768 by 768 pixel square is used to display the scene.
@
- The rest of the screen is used to provide the operator with the driven vehicle parameters.
After the scene has been initialized, the terrain map and vehicles are drawn. The details
; of how this is implemented are discussed below.
B
-
)
L §
S 90
*n
<
N
.
®

™ e N NS AN A AT R A P L L T P T R N o .
. N NN o o RN N T N N N
. N . . . » . . 'y * 'y id D

1Y,

e
N
O
S

e display_termin(lookang g« glz,grx,.grz., px, py, pz, fov,

! i tank jeep,truck junk intank, missile, networking)

LY Q'.
b
N Coord px,py, pz, * viewing reference point */
y -‘J Coord glx, glz, grx, grz: /* intersect points with map boundanes */
K float lookang; /* viewing angle */

. int fov; /* field-of -view */

s Object tank jecp,truck, missile junk, intank; /> display objects */
- Boolean networking;
O
S

‘--—\..

o« .\'..

4 (

extern Coord gndplane{4][3};

R extern Vehicie *driven; /* driven vehicle pointer */
extemn long gndplane_color; /* color for ground plane */

'-:.; extern float gridcoord[NUMZGRIDS)[NUMXGRIDS}(2}{31(3];
’ extern float height_of_eye[NUMVEHTYPES];
JCSIE extern long gridcolor(NUMZGRIDS(NUMXGRIDS]; /*color tor grid
Suares ™/
20N extemn Gridnode *vehgrid(NUMZGRIDS][NUMXGRIDS];

extern Missile *mslidata;

‘ ’ TRy
g Vol
ey

v
2R}

Gridnode *temp; /* temporary pointer to vehicles */

o float startx, startz, stopx, stopz; /*start and stop coord for scan lines */
o short xgrid, zgrid; /*x and z scan line grid indices */
Y short roudir; /* rotation degrees */
‘:a:: float halffov = (DTOR * (float)(fov)/20.0);
" float viewr = lookang - haiffov;
° float viewl = lookang + halffov;
v float right, left; /* right and left angles of fov */
M) ﬁ float threshold; /* max diagonal look distance */
‘ .,Q float x = (driven->x)/100.0; /* driven vehicle x grid index */
K float 2 = -(driven->z)/100.0; /* driven vehicle z grid index */

float deltax, deliaz;
float tangent(); /* array of tangent values */

Figure 3-41. Display Terrain Initialization

MR R

A
L

-~ 8
LA

91

s {
LR S AR

5
h}\

-\-l.o"i.
PP
o

N 4

b T T i '."'- e - s N e e N T T T I N I IR T S S IR -
- . B AL PPl) LY T AN -~ AL s, AL
- "sl-"". LA T T STl ", S A, RS YA S, SN

4 ot N bl '

»

Y - - - - - - - L R
AN Lad ot P .r_*

o

4
L
4
4

LY |
wels)

) -:4
b
(
N
A
B viewport(0,767,0,767); /* set the portion of the screen for the scene®/
L. .-
Ny pushmatrix();
o color(SKYBLUE); /* color the sky blue */
N clear();
oY ortho2(0.0,1023.0,0.0,767.0);, /* outline the screen in black */
P color(BLACK);
S recti(0,0,1023,767);
1 popmatrix();
N pushmatrix();
o /* define the viewing transformations */
N perspective(fov,1.0,0.0, MAXLOOKDIST);
N
' lookat(driven->x,driven->y + height_of_eye[driven->t],driven->z,px,py.pz,0);
b
5 threshold = 20.0; /* threshold for max number of grids drawn in LOS */
A
e /* determine the direction of the line of sight */
o if Jlookang < 0.0) lookang += TWOPI;
" /* lay down a green ground plane 10 paint the terrain over */
=~ color(gndplane _color);
v :_ polf(4, gndplane);
‘ ‘:::
) ‘ /. (2 AT St R R RES TS L L) Draw mc OClan[SRR RSN kG R E Ry ‘/
o
f‘ /* code for a single Octant shown in Figure 3-44 below */
N ,
NN popmatrix();
=
]
e
;-; Figure 3-41 (Continued). Display Terrain Initialization
o
-
.':\
".f
! _;_1- 92
b} ‘.\
-.“
i] .-‘
o
o
o
n
-~
’ ..": “» Rl - m w e ™ T e - - ! -, - ° - - - - - - -
“ Ll .- Lot LSRR ‘.“:.f':f.;.":_-\‘ ,_‘.J-‘- ,\-_._: "- ',,:: ,-_-_‘.,-_:,-{.,:; .r{ J,'.: ™ (:- '_:: AT AT '_:. TR e .,,:: S
o5 ST T W, G VS T W I D e U SN T B LA T U 0 T N Baad oadhoads "ol 2 Al el Nat) Ralh

¥ 'i}:v\}\- "\-..'\ \u"\ s,

At Sal Sl Nl N S0 0 b vaibhal it B Al A Sl A i SR N v et aal S A Anl SRR R el e e e e A _'."':":*_'Jr*_‘ﬁ'“ﬁ'“v'“'"v*;vrv;‘-;w-.v\'vyw

"J“:'.l“ "‘n’l'/. g

[3

(e B
P

i

(SN
1

@

b fR A S A

L e 2l wal wad Sud - led 2

CBa IS aa ol BYR arh Bra aed g e ane s e oS- Al aNR adihe alid-ail S gl gAR QLA JRC bl obic ol it o B aRE okt ol * ol

perspective defines the fleld of view
and the near and far ciipping planes

perspective(fov,twist,near,tar);

near = driven(x,y,z)
far = reference point(px,py,pz)
twist = 0;

Figure 3-42. Viewing Transformations

LT Ay PR e

e PR N N

J

(1) Scene Display. The least number of grid squares is drawn by breaking

o the entire viewing circumference into eight parts or octants. The drawing order for each
.

N octant is based on drawing the grid squares, from the furthest to the nearest, using a scan

line algorithm (Figure 3-43(a)). The viewer’s position is in the center with the direction

of the scan lines for each octant. As the field-of-view is changed, a different octant is

[-

::"‘ selected. For example, if the field-of-view is in the eighth octant, the scan lines are

3 :_t defined by a startz and startx and then incrementing the startz until a stopz threshold is

o

_ . reached. This is one vertical scan line as shown in Figure 3-43(b). The next scan line is

f\ drawn by stepping the startx position towards the viewer, and repeating the process.

,»{ Since each scan line is closer to the viewer and within the field-of-view, fewer grid

.) squares are drawn each time the scan line is moved. For each grid square, the upper and

lower halves of the terrain are drawn first, followed by any targets and the missile.

: All of the octants are drawn using similar scan lines. Code for the

: eighth octant is shown in Figure 3-44. All the other octants use the identical algorithm.

‘l \ Note that the viewer’s x and z positions are changed by one to draw the grid squares on

| adjacent sides of the viewer's grid square. This technique ensures that all the grid

squares are drawn in the field-of-view.

i ..A'\'Q.

:,E After the entire scene is drawn, the vehicles in the viewer’s grid

".':: square are drawn again. This ensures that any vehicles in adjacent grid squares, that may

"E have been drawn after the viewer’s grid square, are painted over by the viewing grid

AL

i:': square’s vehicles. Once we have descibed the technique for drawing the scene, the

' ’§§ specifics on placing a vehicle on the terrain at the desired onentation must be discussed.)

o

‘

0.

v

.;i-:

o

";'d L N e S P L St P e Pl] QAN ol OO L

- . y {‘

» - et . ‘e
R =S .
SIS Wy Py T T,

3rd Octant 2nd Octant

4th Octant 1st Octant

1

PP s
LS NN

s position

=

A
VN

T

5th Octant 8th Octant

™Na
Line-of-
sight

IERLLIRL RIS

o .5
.

etatat

"

2
., 0

P

—_—

one scan line

¥
.l .I
B

Pt a0y

6th Octant 7th Octant

a
«ta

SRR

’l

P
PN)
e

u

% Y
P U 2T
&

., &, &,

[

Viewer's position

s e
P
[

r[l

LLH}!d:of-vieVs‘ | stopz
™ ¥ ‘I &S

P

I

[e

-
4

'd

[y
Y

i

< .
R T,
@

! Gttt

r

'S

v

startx

[y

T '-l 'I

b. startz ‘
Figure 3-43. Octant Scan Lines i

s
|
1
{

va 7

LNy
e

25

‘.
N
h

«®
P

4
>

2

T

AT, “4\;:.‘ N AT
P 1e" DV NI T I I N

-Rh192 374

UNCLASSIFIED

lITElRCTlVE NETHORKED MOVING ’LQTFMI SINULATORS (U)
AL POSTGRADUATE SCHOOL MON
N R OLIVER ET AL. FEB 88 “PSSZ-BB “2 NIPR- RTEC-48-47

Pa i o

0--.. \- \J.‘..\ r
" 4
PP PP

e

s ;

s

[
I

28

=

hll |

e

k

T

22

36

12

2

Qg

I-I
—
e —
———
——
——

Il 1.0

ii
I

1N

—_—
_=

=1

I.Z
———
——t
——
—
—

Y XY eV
A
NI

R A

-t gt

R o

if (lookang > SEVEN_QTR_PI) { /* The eighth Octant */
startx = grx/100.0; /*initialize start and stop */
startz = grz/100.0;
stopz = glz/100.0;

if (startz < 0.0) startz= 0.0; / ensure start and stop are on map */
if (stopz > 99.0) stopz = 99.0;

startx = x + threshold; /* set the max number of grids drawn in
the depth of field */
if (startx > 99.0) startx = 99.0;

zgrid = (short)startz; /* first z grid to be drawn scan line */
while ((startx >= x) && (startz <= z)) { /* repeat until at the view pos*/
xgrid =(short) startx; /* set x scan line */

color(gridcolor{zgridj(xgrid]); /* color for the grid square */
polf(3,& gridcoord(zgrid](xgrid](0][0][0]); /* draw the grid square */
polf(3.&gridcoord(zgrid](xgrid](1]{0](0});

/‘..tt..t‘.‘..‘..“‘mw (he Vehicles SRS BESOSEENSEREY ./

/* code shown in Fig. 345 */

/‘ SESBERSEEIRESRRES me t.he mlsslle CEEEVE RS S S REN NS ‘/

/* code shown in Fig. 349 */
zgrid += 1; /* goto the next grid square on the scan line */

if (2grid > (short)stopz) { /* completed a scan line */
startx = startx - 1.0; /* set the next x scan line */
deltax = startx - x;

stantz = z - (delax * nght);

if (starz < 0.0) startz = 0.0;

if (lookang < AboveX _axis)
stopz =z - (delax * left);
else
stopz =z + (deltax * left);
if (stopz > 99.0) stopz = 99.0;

zgnd = (short)startz; /*set the first z grid on the next scan line*/

Figure 3-44. Displaying an Octant

..........

..... N gy . " : Cal ool A R A e v i et i el Bt S i e el I b St e

*
P

b
Y
4
<
<
N
{ (2) Vehicle Display. All the vehicles in a grid square are sorted in a
! ::'.j linked list based on their distance from the viewer. After drawing the terrain of a gnd
ji:- square, the vehicles are drawn by traversing the linked list that is associated with the gnid
. d square’s vehicle pointer. Because all the vehicles in the list are sorted by their depth in
9
;., the viewing volume, proper drawing order is obtained (Figure 3-45).
o~ Each vehicle must be drawn by first performing all the rotations, then
N translating it to a position within a grid square. Prior to any rotation, each vehicle object
N
n is drawn about the origin of a three-dimensional axis (Figure 3-46).
"\
®
-:“.
- temp = vehgrid{zgrid}{xgrid]->next; /*assign pointer to veh grid pointer*/
p - while (temp != NULL) { /*update every vehicle in the list */
pushmatrix();
: rotdir = (short)(10.0 * RTOD * temp->vehptr->ang);
. translate(temp->vehptr->x temp->vehpir->y temp->vehptr->z);
! rotate(rotdir, 'Y’); /* rotate to course */
rotate(temp->vehptr->inc, 'Z'); /* incline the vehicle */
NS rotate(temp->vehptr->tilt,"X’); /* tilt the vehicle */
"
:_: switch (temp->vehptr->t)
N case TANKS : if (temp->vehptr==driven) callobj(intank);
-.j callobj(tank); /* draw the tank */
3 break;
® case TRUCKS : callobj(truck); break; M*draw the truck */
- case JEEPS : callobj(jeep); break; /*draw the jeep */
o case WRECK : callobj(junk); break; /*draw the wreck */
09)
S popmatrix();
S temp = temp->next; /* goto the next vehicle */
[] }
r -

Figure 3-45. Displaying the Vehicles

LA

a
(4

". l’
e,
"'

L4

.'. -

te

ML
‘L
LY

L]

. 2
« 4
v

v ol
o '}
.

XX

x_5 @
PSR

¥
¢

Figure 3-46. Vehicle Axis

l.?

55 S
__‘

s

/.

To orient a vehicle object to the terrain, it is inclined by rotating it

3
.8

about the z axis and tilted by rotating it about the x axis.

fo\/ NN

.
0
4
v

AZugLs

-
2
»

N

rotate(temp->vehptr->inc, 'Z’)
rotate(temp->vehptr->tilt, 'X’)

Fol af]
FRR R

O,
"

In addition, the vehicle must be oriented to point in the direction it is

-

heading. This is performed by rotating the vehicle object about the y axis. Note that all

the rotations are performed while the vehicle object is still at the origin, then the

-

% 4 %
.-l
A

P AL

translation is done (Figure 3-47). Only in this order will the vehicle be drawn at the

.fn“.l:l\\
REAGE R

g

98

L
‘0,2

’
.

v

1‘-“,’ [) .,I PP
Ao TR RN

o

.
2 3"y

v, W, AW - L - = - oo
XTI ._(,u.,(x_,ﬂ."-)\,_
R v . . - W .

A 'qh,;w AN

Mat A N M) .

AL IR e R S N R T S N AT WL
AW S ".'J‘x" 4 ..., . h

-aw
\"\
«

LRy

A x

! "-"1’1"
V"'..l'

e
5% Y h

R

v
s

No& Gy
| Y

n,l".z‘;:

+

[RE S G S Sy ah

A

correct orientation at its new position on the terrain. These transformations are

performed on the vehicle object in the following manner.

translate(temp->vehptr->x,temp->vehptr- >y, temp->vehptr->z);
rotate(rotdir, 'Y’),

rotate(temp->vehptr->inc, 'Z’);

rotate(temp->vehptr->tilt,' X’);

callobj(vehicle),

If the driven vehicle is a tank, another object called intank is drawn
after the tank object. The intank objeci simulates the view the tank commander sees
looking out of the tank. This view has slits bordered in black with a view of the top the
gun barrel. A view from within a tank is shown in Chapter V. The intank object is
drawn only when the driven vehicle is a tank. This is done to save time, since the
polygons of the inside of the tank cannot be seen from the exterior of .ie tank.

(3) Missile Display. If the vehicle system is netwvorking with another

workstation that is running the missile simulator, the missile’s course and position are
passed via a communication link. When the grid square containing the missile is

scanned, the missile object is rotated about the y axis to its course then translated to its

position within the grid square (Figure 3-48).

fall Bl Bl Ao Sah Byt Bt e lav_fe-_sa aev g LB abe ald vl ars ol a‘h b o |

e]

r
“

el
L4

v
»

callobj(jeep); rotate(tilt,

Step 1 Step 2

'X);

Ax

rotate(inc,

'Z'); rotate(course,

Step 3 Step 4

LY
LR
.
......
.
e
-

$ X

tranglate(xpos,ypos,zpos);

z Step 5
Figure 3-47. Vehicle Course

v

'Y');

100

if(networking) { /* if communicating with missile simulator */
if((msldata->gridx = xgrid)& & (msldata->gridz == zgrid))(
. /*if missile is in scanned grid square*/
o pushmatrix();
i translate(msldata->x msldata->y msldata->z);
rotate(msldata->cse, 'Y'); /* rotate to missile course */
N callobj(missile); /* draw the missile */
popmatrix();
)

-)
Figure 3-48. Displaying the Missile

Chgey -
I I’.)

(4) Destroyed Target Display. If a vehicle object has been hit by a

Xy Sy
Pls

S

missile, its vehicle type is changed to WRECK. The wreckage of a destroyed vehicle is

,-
VL@

displayed as a pile of twisted sides by drawing a junk object instead of the previous

-f'/

L3
)
LA

vehicle object whea traversing the vehicle list in the function display terrain() (Figure

s D

3-49).

3
RO *e _".

N N 0
CUSNA NG LA

LYY oAy

101

NN (SN

-

Uy

XL

4
o
o

"

m

o

- »
SN

e
*..'-P

..‘.
"~
'\&
N
.\A
\{.Q..
N
-..-)'
h
e e . \-\\nq
e o, . IO AL AN A AR AANS o N T S
5, ' : 0 -- -h...\h.- Iu- -..-\p-IJ\J 'V" .h\-t-\ A R
\x.\\.... AJ:\l/...\.-r).rv R P ® '8,

A RS
0T
.L‘
9\‘;
..‘::
T
~ Lt
-.\‘ %
V) e
(
e, 2,
NS
o~ IV. NETWORKING
nr‘\-'»
\
',-::', To provide as realistic a scene as possible to the FOG-M simulator operator, the
'::f:'-: targets he launches against must model real vehicles as closely as possible. This includes
. modeling the dynamic characteristics of a vehicle in motion as driven by a human
. ’h
::-'.;:- operator. This realism was achieved by introducing a networking capability to the
"'.- simulator, allowing a second workstation to provide interactive control over the
LA
Y x X n
?, . movement of vehicles across the target arca.
. A. CAPABILITIES
{ i The ability of the FOG-M simulator to receive information from an external
.J'_:
::::: source, as described in Ref {1} and depicted in Figure 4-1(a), was never implemented.
A0
::::::: The current study explored the use of 4.3BSD UNIX network capabilities to provide this
intended feature. In addition, the goal of this study was to implement the broadcr
i _
s capabilities of the system shown in Figure 4-1(b), to provide a single weapon console and

RAAE

a single target console in a two-node network of IRIS workstations. In this system, the

e
o R
RN interactions of each operator with the program running at his console are reflected in the
A
:::‘ opposite console. As the vehicle operator turns and accelerates his jeep, for example, the
>
' "
QTN
| %
"',‘ missile operator sees a turning jeep speed up as it moves across the terrain.
";_'-l
e
ad Each console in this system can act in stand-alone mode or can communicate with
vl'\"a
T |
o the other console. If networking is on, data and control information is exchanged |
~ ‘
L. »
L between consoles to allow the vehicle operator to see the missile in-flight and to allow
-.,~'
¥ --:\
o 103
~.
"«
LN}
QWY
o “\',"»
¥ "-‘_‘.
e e e e e Y L e
. d h 0 - N 8 LA, Lo N » L4 » » » » L] » » » * »

o’
i s

P
A

NS
l‘ }.

[}

AP
XX

Figure 4-1 Simulator Systems

FOG-M | Vehicle
Simulator Posit’ions
(a)
JIRIS workstation
FOG-M tl— Mov.ing
Simulator Vehicle
Simulator
(b)

Weapon Weapon .o Weapon
Console Console Console
L |
1 |
Data and
Network
Server
| L

] 1
Vehicle Vehicle . Vehicle
Console Console ° Consocle

()

Vet A DT M)

104

Kyood
e I ;" .’ I";.'-".;.

v

» r s [.‘;

v
' .
ay ny t, 0
PR

‘.I
[

a ¥
L.

pr g
a .
LN

YADSREE

.
»

-A~'."‘-
r s Yy
N

"l
.
Y

y
P

g iy 4y ¥
-‘.‘-‘

e

2
a,

A a

LA

Ty Y ALY ®
. [d <
&I\.{Q"'.{'r v} L‘

‘e

e,

PN
N Y e
A
. P

e L

-

Do

' E)
R
“',‘.‘u{'i) !

e
e @

<A

wo

the missile operator to view interiactivzly controlled vehicles. The system provides for
repeated weapons launch against muitiple targets and the ability of either operator to exit

from his simulator without affecting operation of the other console.

B. IMPLEMENTATION

This study was the first attempt at the Naval Postgraduate School to produce a
network of interactive, real-time moving platform simulators. Normal (blocking) socket
/O was chosen as the network communications protocol for two reasons. Familiarity
with this use of the 4.3BSD UNIX network session layer protocol was gained from the
success of several smaller projects. Using blocking IO results in the simulators
operating synchronously, but it also aids in debugging the interaction of the two
simulators. Since the normal result of reading an empty socket is for the reading process
to block, this fact was used to isolate an improper sequence of socket I[/O attempts. An
excellent discussion of the UNIX socke! mechanism is found in [5].

The vehicle console must use the current position and onientation of the missile to
correctly render the missile image in the scene. Similar information is required by the
missile console for displaying targets that have been established by the vehicle operator.
Since this exchange of data is inherently duplex in nature, a pair of sockets was chosen as
the mechanism to accomplish the transfer. The use of dedicated communication links in
each direction and tire guaranteed delivery of socket stream data ensures the availability
and reliability of the necessary information,

The moving vehicle simulator was chosen to act as server to the client missile

simulator, although the arrangement could be reversed. Operation of each simulator in a

105

-

v
<
N
‘e
s
e

\ ¥
'y Ny
A

L',

a

‘l
‘l‘l

LAY

v
[N

T -“ I's

.
&

Y
Y

dg

3
oA

1

'
" I‘ ¢
,

4, 1 5 &

Ay ‘1.'
R
[

h
- ’l 3

' 4

N I

.
»

networked mode requires the following steps in additon to those of stand-alone
operation:

- initial set-up of the network

- initial data transfer

- display loop data wransfer

Initial network set-up involves calls to system routines to establish the network

data paths. Sockets are created to connect the workstations with a dedicated read path
and a dedicated write path for both data and control information as indicated in Figure
4-2, for a total of four sockets opened by each simulator. Qutput to be sent to the other
console is always sent via a simulator’s "outxxx" socket, and all input is received via a
simulator’s "“inxxx" socket. Failure to establish this configuration during initial network
set-up results in fallback to stand-alone operation, with no further networking attempted.

Data and control paths are different to maintain separation of function, and to allow the

possible use of different transmission mechanisms for each path in future versions of the

socket
outdata p—®— #—a}—f indata
indata f—{s—= #}— cutdata
outcontrol p—® —a}— incontrol

incontrol p—#—=@———————a}— cutcontrol

ETHERNET N

FOG-M

Moving
Simulator

Vehicle Simulator

Figure 4-2 Network Connections

106

,.r\“.r.r.r

~
.""- \-\.\\ ._\'

EAE

»‘I-

DadiigPadias sttt Aah daast 4 ,"_r Rk el N A8 a8 Yt E e M e AR A N Mad o A G Aadh itk Sadh A r‘:'\‘r"'."‘Tv_r‘T

simulator. The synchronous operatien of the curreni systern tught be avoided by using
"out-of-band” or non blocking mechanisms. This study did not explore these
possibilities.

The number, type, and other relevant information zbout the vehicles defined by
the moving vehicle simulator operator must be made known to the missile console before
its operator can launch weapons against these targeis (the sequence of steps used to

define a vehicle are outhiied in the | ser’s Guide of Chapter V). After initial network

PR PR]

set-up 1s completed, the FOG-M console waits to receive the vehicle definition data

I

St
-.t x

before permitting missile launch to occur. After the vehicle operator has defined the
vehicles of his choice und has selected the vehicle he wishes to drive, routine
transfer datat) passes this initialization data (Figure 4-3). The vehicle console then
waits for missile launch. After receiving initializabion information, the missile console
allows a launch to take place. The vehicle console waits for the launch event before
proceeding with the displiy loop to assure synchronization of the two programs at the
ume of missile launch. A handshaking takes place after initial data transfer and before
the display loop begins to allow either console to exit from the simulation. This consists
of each console sending 1ts intent to continue or exit to the other console, with
subsequent operation of the simulators based on the input received. If the missile
console were to quit, for example, the vehicle censole could continue to run in stand-
alone mode.

Both programs enter their tespective display loops to hegin data exchange when
the missile 1s launched. Durning the displav foop. severai key paramecters can change.

The position and course of the drniven vehusie can change ot tiv speed s non-zero. The

167

'.n-" W
e
PR,

AT . e R . g - ™
e, . S L T N S b SRR
P . ; AN I TS SN A

AT K . e . e RN
AW I IS PSR T RN Y% L{A_‘L'A"L(Al A

-

. transfer_data(numveh)
short numveh(];

s
- 'r ‘a .l .

extern Vehicle *vehlist;
extern int outdata;

'."-,‘h
(‘ .

[4

v X,

Vehicle *temp;
NN char outbuffer1(10], outbuffer2(80};
b int i
-
) for(i=0;i<NUMVEHTYPES;i++) {
e
LT
/* send the number of vehicles of this type */
o sprintf(outbuffer1,”%f" (float)numvehli]);
ANt write(outdata,outbuffer1,10);
vy temp=vehlist;
CASE i =
o while(temp!=NULL) {
L /* scan the definition data list for vehicies of this type */
:.'__. if(temp->t==i) {
-:‘ . /* send position, velocity, and course data */
o sprintf(outbuffer2," %f %f %f %f %f",
SO temp->x,temp->y, temp->z,temp->vel temp->ang);
(write{outdata,outbuffer2,80);
poe)
: temp=temp->next;
)

=

U aens

}

AT

Figure 4-3 Initial Data Transfer

ay oY
]

.

oty
o

- . e
*

z

position and course of the missile always changes during flight, up to the point of impact

.

PRELALIEN X
2SS

LA

[N

on a target. In addition, either operator can choose to exit his simulator during the

Il
LA

display loop. Since all of these parameters directly affect the display, current values

- v ‘s
v 'i N
R B

must be maintained. Figure 4-4 lists routine nerwork() which handles display loop

..
[
~

P

»
’

AR

, .

-

networking.

-

108

h P o

LA

2 2%

v
FAL Y

A
Els

B N A N A SN I N TPy Ve I S R RNy
R P I A - AT R A AN S
ok P W e O

D)

TN WAL
\' .'“.'-. ’ . * \

l-..""*',,'.'

5-\
1‘
.“\‘
|
'
':: #include "veh h” /* defines CONTINUE=1.0 EXITING=0.0 */
> #include “stdio h”
iy network(networking netwkesstab acuve,zoomed, scm, menu,vehicon,
" windowsx,windowsy. mcnt Stat)
. Boolean *networking, *netwkestab active zoomed;
5 Object scrm].menu{].vehiconi];
:' Coord windowsx, windowsy;
X short *mcnt *siat;
., (
. extern Vehicle *dnven;
y extern Missile *msldata;
- extern int indata,outdata,incontrol outcontrol;
- char buffer{10},inbuffer2{60),outbuffer[80];
o float flying typehit,whichhitmslcse missile_console_status;

/* HANDSHAKE */
>. sprintf(buffer," %" (float)active):
' write{outcontrol buffer,10);
read(incontrol buffer,10);
sscanf(buffer,” %f" , &missilc_console_status);
if(missile_console_status==EXITING) { /* [F MISSILE CONSOLE HAS */

.- *networking=FALSE; /* SECURED, DISCONTINUE ¢/
(exit_network(); /* NETWORKING. */

K *netwkestab=FALSE;

-)

- else | /* WRITE VEHICLE POSITION, COURSE, IDENTITY */
- sprintf(outbuffer,” %f %f %f %f %f %" driven->x driven->y driven->z,
", driven->cse,(fioat)driven->1),(float)(driven->t));

- write(outdata,outbuffer 80);
read(incontrol,buffer,10); /* CHECK FOR MISSILE HIT */
sscanf(buffer,"% (", &flying);

: if((short)flying == TRUE) { /* IF MISSILE IS STILL FLYING */

N read(indatainbuffer2,60); /* READ ITS POSTION AND COURSE */

j sscanf(inbuffer2,"%f %f %f %of" & (msidata->x) & (msldata->y),&(msldata->z),&mslcse);
b msldata->cse = 10 * (short)(RTOD * mslcse);

@ msldata->gridx=(short}(msidata->x / TENTHKM);

" mslidata->gridz=(short}(-msidata->z / TENTHKM);

i)

X else [/* FIND OUT WHAT IT HIT, AND HANDLE THE CASUALTY */

- read(indatainbuffer2 60);

e sscanf(inbuffer2,”%f %f &typehiL&whichhit);

! casualty(& networking . zoomed scrm menu,vehicon, windowsx,

. windowsy typehit,whichhit.&*ment,&* stat).
Z)]
)

N
~))

A Figure 4-4 Display Loop Data Transfer
R o
"y 109
.

]

p .:
R N U R O AR U AR

.
e
.

.

-
o 7

PR
. "

. L]
b.‘ !\
- The two simulators first handshake to ensure networking is still possible. Without
r this check, one simulator might attempt to read or write to a socket closed by a departing
{ ¢«
" opposite console, aborting the simulator abruptly. With this check, when the opposite
- console exits, the continuing console is informed. In this case, it no longer attempts
l ~ socket 1/O, but can continue operation in stand-alone mode.
__'-\.{- If the simulator can continue networking, the driven vehicle data is sent to the
:::_:::1 missile console. Even though more than one target can be present in the missile flight
e
y area, only driven vehicle data must be sent to the missile console. The driven vehicle is
’::f.j: the only one that can be interactively controlled, while the others maintain course and
' ;l:j:_ speed. The missile console calculates a new position for each of the other vehicles based
[J . . .
S on the course and speed received from the initial transfer. After receiving the new
::.-jz. vehicle information, the missile console sends a missile status flag indicating whether the
L missile is still flying or whether it has hit a target. In the former case, missile position
and course data follows; in the latter case, the identity of the destroyed target is sent. If a
vehicle has been hit, the vehicle console enters routine casualty(). If the identity of the
destroyed vehicle matches that of the driven vehicle, an explosion is displayed.
Otherwise the vehicle operator sees the burning wreckage of the destroyed vehicle if it is
in the current field-of-view. In either case, the missile console then allows another
weapon to be launched, and the vehicle console allows another vehicle to be selected for
driving. At this point, either console can again elect to exit from the simulation without
affecting the opposite console, as before.
9. 110
-
"o
I‘.-J
=
-~
o
WA
.’,:{ S
f-_',- e .,;'1,\.\‘_\&,-'\.-»_,\‘,.« .W.“'vw-;\:. :‘.\"‘,}\-\-.*:,.:"\ .\\.h\(x “ -\\,J,\.." '_;(,J.

o

e - e

.l >

R

-

N
Pd
S

AR

LN st e
. ' T
VU \
. LT R

LRI St

.'._-f'l

O

';"‘.‘

«

"'
Y

" 3 ﬂ. '
A

gy
AR

@

4, " ll
ARt R

A%

K]
t.a B

>
)

' AL

ﬁﬂ.

g

C. LIMITATIONS

The implementation described above achieves the goal of providing out-the-
window views from both missile and vehicle consoles in a network of two simulators, but
it is limited in several respects. At present, the system allows the network connection of
only one console of each simulator type, in a dedicated link arrangement. A more
general distributed system such as that shown in Figure 4-1(c) would permit multiple
workstations to "plug-in" to a central data and network server at will, entering and
leaving the simulation at any time. Currently each simulator must perform both data
processing and graphics output. A better solution would have the computation chore of
updating vehicle and missile parameters done by the central server. Other consoles could
then access this information to present their respective out-the-window views.

Due to the networking model chosen and the requirement of each console to
update its own data, the simulators must run synchronously. A console does not proceed
past its request for data from the other console (a socket read) until the information it
needs becomes current. This assures the two displays remain identical with respect to
vehicle and missile location and orientation in real-time. This "lock-step” executing
nature of the simulators has the undesired affect of preventing the vehicle console
operator from changing to a different vehicle to drive while the FOG-M missile is in-
flight. Allowing this to happen would result in the missile "hanging” in mid flight until
the new vehicle selection was made. When running in stand-alone mode, the vehicle
console operator can reset the simulator or choose to drive a different vehicle at any time

during the display loop.

111

e r-,

"""’-I'-"J qf-f

y ¥ o, P P P P A Tl o
et e N Y TNy T T A A B N A R L N

HaXalaX s .-.o\

. . ” " YT TYTYY L et Bol
o " L vy - NS

While these limitations do exist, the system stll provides a realistic though
N simple interactive simulation environment. The techniques used provide the basis for
~ implementing the broader capabilities of the general distibuted simulation system of

.i; Figure 4-1(c).

LRt T Y
’4’;‘1. PR

wren

1

5 NN

PR R

1, ‘.
,1'.. a4

CHNYy
s LN

A

TR e}
a v a

112

i
AW

Ll i AR A AN AN A A e N A R i ety T Ne Wy Wy WOSW g W Wy W W

AAALAAAN NN

|

V. MOVING VEHICLE SIMULATOR USLR’S GUIDE

‘ A INTRODUCTION

, The user-interface of the onginal FOG-M simulator has been more fully
:':: developed to present a user-tnendly, easy-to-use system. The primary operator
;Z interaction with the system is through a series of menus nroviding all of the available
. user options. Help informatiun appears on-screen with each of these menus. In addition,
‘ the use of icons, color and sound gives visual and audio feedback during most user
actions.

\ Operation of the simulator consists of an initialization phase where the simulator
{ configuration is established, and the actual simulation phase where vehicles travel across
the terrain. In the first phase, the user must indicate whether the simulator is to be run in
" stand-alone mode or in conjunction with the FOG-M simulator. He must also define each
- vehicle that is to be present in the simulator, to include vehicle locations, course and
E speed. The simulation phase allows interactive control of one of the defined vehicles and
; displays the out-the-window view from this driven vehicle.

B. INITIALIZATION

. After logging on to an IRIS workstation, typing

‘:: veh [connect_to]

: at the UNIX prompt loads the moving vehicle simulator program and begins its
'_ execution. The executable module of the simulator must be present in the current
113

“

.
e

N I Rt S I D SNt C TR Y B R R R N S T RP R T A RS L T R UL T >)
ISARS AR ISR A SR REY/ A AR CR N \f\""\"-."""’ o ".'\."-.'\"'.J\"\’.*':*\';’\"':)

ALY

A At aPl ati ohe of

<

\ »

\l

:’ directory for it to be started in this manner. The command line argument connect_to is
S

4 the network host name of an IRIS workstation to be connected to should the user decide
(
to run the simulator in its networked mode. A default workstation is set if this argument

'.'C_' is not entered.

" The simulator makes use of two external files that must be available to continue
\
_:?'. normal program execution. Terrain elevation data is read from the file dted.veh found in
:::: the path /work/DTED. If this file cannot be found, the simulator displays a red warning
b2
. ' screen and the message

:EI: TERRAIN ELEVATION DATA FILE NOT FOUND.

R Do you wish to continue?

- If continuing:

(1) the terrain will appear flat
(2) networking will be disabled
Enter 'q’ to quit.
Enter 'c’ to continue.
RESPONSE ==>?

{ Continuing execution without terrain elevation data is possible, but in this case the entire
Ej:l 100 square kilometer area of terrain is drawn at the same (zero meters) elevation. This
\ does not affect the moving vehicle simulator except with respect to networking. The
O terrain elevation database is not a shared resource: each simulator uses its own local copy
¥

j:_f: of elevation data. Since the FOG-M simulator expects a non-zero value for a vehicle’s Y
g (elevation) coordinate, translation of a vehicle to zero meters height in the FOG-M

[]

J display draws the vehicle incorrectly. Networking is disabled to prevent this. All other
features of the moving vehicle simulator remain present, but the view from the inside of a
.' vehicle is of an uninteresting flat expanse of checkerboard colored ground.

9 114

..

K.

, Y

A Y

| .

"

®

o

k. ¥

B 2, L G Ao N R A P S P O A AN AT A

R AP

.l ’I. ;‘ . .-". "

{ ' If the user continues, the simulator proceeds to read tile polygon.data also found
.' in the path /work/DTED. This file of terrain polygon colors is created if it is not found.
fj; Colors are read (or written) with a brief countdown appearing on the screen during the
_ process. At this point, the opening menu and first introductory screen appears describing
T the simulator and its features.
oA The current menu is always present in the upper right comer of the display.
Instructions that apply to the current menu appear in the lower right comer of the display.
Menu selections are made with the left mouse button by moving the cursor to the desired
7, menu item, then depressing and releasing the button. Mouse movements are constrained
" to the menu area when menu selections are the only input possible. Menu items appear
. in a yellow color if the cursor is moved off the menu; they appear red when the cursor
\ -
passes over an item, and they are highlighted in white when the selection is made. It is
o possible to abort a menu selection after depressing the left mouse button simply by l
-
‘, moving the cursor off the selected item. Invalid selections cause the keyboard bell to
n ring several times to indicate the invalid choice. This can occur if a menu item is
::-:‘ selected when that item is not currently available. Supplementary information describing
- the invalid selection appears in the menu instructions area of the screen should this occur.
[
j: The below listed six menus provide all of the available user options for
.J'
-2 controlling the simulator:
"
OPENING MENU
™~ MAIN MENU
< ADD VEHICLE MENU
v DELETE VEHICLE MENU
AN SWITCH VEHICLES MENU
RUN MENU
N
o5 115
n’
o
oL
¥

[d

1. Opening Menuy

Menu choices available from the OPENING menu are:

NEXT PAGE
PREVIOUS PAGE
NETWORKING
QUIT PROGRAM

Three screens containing introductory textual information can be paged through from the
OPENING menu using the NEXT PAGE and PREVIOUS PAGE menu items. If
networking is desired, the NETWORKING menu item must be selected. The operator can
also choose the QUIT PROGRAM iiem to exit the simulator. This item is available in
most menus.
2. Main Menu
a. Opuons

The MAIN menu is entered by selecting NEXT PAGE from the
third introductory opening screen. The MAIN menu appears along with a large two-
dimensional contour map of terrain (Figure 5-1(a)). All initialization phase actions are
carried out from the MAIN menu. MAIN menu item selections result in vehicles being
defined or the actual simulation begun or exited, with choices made from the following

items:

ADD VEHICLE
DELETE VEHICLE
DEFAULTS
RUN
ZOOM IN/OUT
QUIT PROGRAM

Selecting ZOOM IN/OUT with the large contour map present on

the screen allows the user to view a small one-kilometer area of the map in larger scale.
116

.f:.f:/'\J".-".'.‘-*"-F\.'.'f" . AT A A AN I A
L)

VLY '. n NN YA NS

"!"' " -I'I'I'“--"'m b b ave A A% A% SRkl fal ek el Gl ool S Sad- deah Aol Sl AL SUb sk st sl atiCaln st ailh liCantC it it S
Ve "

i
R
2
;‘- This is done by moving the cursor 1o the desired map location and depressing the left
:- mouse button. If a zoomed-in section of the map is displayed, selecting ZOOM IN/OUT
AN returns the display to the large contour map. Figure 5-1(b) shows the zoomed-in contour
i map.
:::i Sclecting RUN completes the initialization phase and begins the
:;j-: simulation. RUN is discussed below in the section describing the display loop.
:: b. Defining Vehicles
» Vehicles are defined by adding new vehicles or deleting previously
x defined vehicles. Vehicles can be added by selecting the DEFAULTS menu item or the
‘ ADD VEHICLE menu item. DEFAULTS places three vehicles of each type (TANKS,
21 TRUCKS, JEEPS) on the map near the middle right area of the terrain, all traveling north
)
E: at a speed of about twelve miles-per-hour. The user can select RUN to begin the
$: simulation with only these vehicles, or can continue to add or delete vehicles as
; described below. Vehicles appear on the contour map as a small icon with an arrow
._E pointing in the travel direction.
A
3 Selecting DELETE VEHICLE allows a user to remove a previously
-jf: defined vehicle from the contour map. The cursor is changed to an "X’ shape, and must
;: be positioned over the vehicle to be deleted. Depressing the left mouse button then
‘: removes the vehicle from the map.
N
:
365
e
-

X 117
>

VW ey

v

e At |

Lo A" Ate " A4 1

(S

7 _

pe Displays

VAN

'

(RE

N G & A AN Ll Y .-
....\.. &N\-%\\ FaTPAPLIn oty L I.IJ \ RPT PSS .
Bos) .Pm*. W LN A f..\z e

AT RNT R R T RN T Ry Ty T g egeoTgyyTgwyvgwpwywyywywy L ad A Bl kBl Bl I D A w 7"‘5“

The A0 8 47T E wenu Showee dispiays the ADD menu with the
following selections svanubic
ADTTTANK
ADOD TRUCK

AL bp
KETURN TG MAIN

The tist three items deioe o veniele s type, and the last item returns the display to the
MAIN menu. Atter scicoiny a vebucie type, the cursor can be moved from the menu
area to a lovauon on the contour map. The cursor changes to an icon depicting the
selected vehicle type A vehicie's location op the terrain is set by moving the cursor/icon
to the desired iocation. then depressuig the left mouse button. An icon image of the
vehicle appears on the map at the specifiedt location. The vehicle’s course is set in a
similar manner. Once the vehicle has teen placed on the map, moving the cursor gives a
"rubber-band” line from the icon 1o the current location of the cursor, indicating a
possible course for the vehiciec. Depressing the left mouse button sets the course to the

direction of the rubber-band line. After a vehicle’s position and course has been

A}

"

established, a speedometer appears in the menu area of the display to allow setting the

AP
G h

vehicle’s speed. The speedoweter 15 2 shding rectangle contained in a rectangular box

Ser

marked in miles-per-hour increments. with the current speed appearing below the

speedometer. The cursor 's automaticasiv placed on th> slider bar at an indicated speed

1.4
Y N Yy
L] » v ot
L AR R

55

of zero once the vehic course is set. and <an be moved left or right to change the speed.

.

x|

o

Depressing the dett mouse button sers the speed to the value shown below the

(L)
R /2

A

speedometer

<
.‘l '.A

DR A

1Y

A e R T e e e e e T T e e e e e e e e e e e - . AT LI
e -~ B R S A T A TN I S o eard® «‘ AP A
PPN PR ;AAJC.J"...(.‘{.J o A i a3 e d s L f‘.,'_‘,r‘..‘h;_._;.;_‘.:',(},r:‘ “ 'c T

N

bl Jdh g il " v A A e A e S At i g

To detine several vehicles of the same type the sequence described
above
- move cursor/icon to desired map location
- move rubber-band line to desired course
- move cursor to desired speedometer speed
can be repeated without retuming to the MAIN menu. Once all vehicles have been
defined, selecting RUN from the MAIN menu displays the large contour map, icons for

alt defined vehicles, and the SWITCH VEHICLES menu.

3 Switch Vehicles Menu

To begin the simulation and provide the user with an out-the-window
view from a vehicle, the vehicle to be driven must be selected from those previously

defined. SWITCH VEHICLES menu options are:

ZOOM IN/OUT
QUIT PROGRAM

As described before, the ZOOM IN/OUT item allows a closer look at a small area of the
contour map. A vehicle is selected for driving by moving the cursor over the vehicle’s
icon on the map, then depressing the left mouse button. The cursor changes shape to a
crosshair as it moves out of the menu area. Selection of a vehicle on the map begins the
display loop operation of the simulator. If networking, the vehicle simulator waits untl
missile launch occurs to enter the display loop. The options available for interactive

control of vehicles is described in the next section.

AL AR LML AL A b bt i AL S LA EACh Ch A L et b S R e S S A AT '"""’"T

LV'_L
M
K
yi
. C. DRIVING CONTROLS
:f:j Afer RUN is selected from the MAIN menu and the driven vehicle is selected,
.
::-:.' the display changes to the terrain and vehicles, with a view from inside the driven vehicle
» (Figure 5-2). The driving display is divided into five parts:

- The terrain viewed from the driven vehicle
P - The vehicle control panel

e - The navigationa) status panel

' - A scaled contour map

~ - The oper.iing menu bars

N

- The techniques used o control the dnven vehicle and displays are discussed below.
4) | [riven Vehiele Controls

o

7 The dniven vehicie's course and speed can be changed by using the dial
':-‘.'; box. The Jourse and speed ranges are 0 to 3&X) degrees and -40 MPH to 60 MPH
o

respectively. The senwitivity 1s set to provide a smooth dansition of values throughout

the range of each dial. The operator 1s given four means of viewing the settings that are

entered.

» l, "v "- ll "I 'lr ..t .
r_e i .’.'-'n "—'.

- Digital displays for speed in MPH and course in degrees.

) n
o - Relative motion between dnven vehicle and terrain
o
- An arrow on the small scale contour map for course
N - Motion of the contour map arrow for speed.
® While driving on the terrain, the driven vehicle can stall if either of the
following conditions are satished.
- - Vehicle enters within 200 meters of a terrain map boundary
3' - Vehicle exceeds a steepness threshold on a hill
wr The only way to remove the driven vehicle from a stalled condition is to back it up and
N change the course away from the condition that caused it to become stalled originally.
®
“
121
AN
N>~
[
) i)

9, ,l I
b ‘
PO AT ST A R N 'v- _.r.r.r.rr.r e e (P S S B A R e N o o

L) ‘\l\ 0 *.. 0 h. ~ ~\s~ \ NN\ () \,\ ‘ ‘-f-h YN "‘ X '-'\n .uh"‘l'

Aedsiq Sutauq 'Z-¢ amsiy

" o
! m@ s%_&_.

o B¢

Gy g
[¢RE™

e i~

WR0Ad | 1S

SITITHIA IINUHD

X000 i

o 9IE E

a1a miia 1
woe ¥

. 4Jl.v!.l lbﬁ 'v .
; ,L 3] & Oy Rl

NN B INT ud 3d0

.....

o . T o U ——
= T . ST o L MO

e,
———

...........
.........

............

...........

»
........
.........

......
]
.

.......

Driven Vehicle Views

When dnving, the operator views the terrain from the inside of a vehicle.
The view from within a vehicle can be changed by using either one of two dials. These
two dials change the directuon the operator is looking out of the vehicle and how far his
head is tulted up or down. The direction out of the vehicle can be changed from 0 to 360
degrees relative to the vehicle's course and the tilt from -25 to +25 degrees with respect
to the honizon. The view out of the jeep is unrestncted in all directions except for the
posts that support the roof (Figure 5-3). The view out of the tank 1s limited to 82 degrees
to simulate the restnicted view of the tank commander (Figure 5-4). The view out of the
truck is limited to 180 degrees because it has no back window. All the restricted views
are displayed to the operator as black surfaces.

3. Menu Selections

Durning the driving display, the operator is given two menu choices at the
upper right hand side of the screen. If not networking, the driver can switch to another
vehicle by using the left mouse button and selecting CHANGE VEHICLES, or the
number and placement of all the vehicles on the terrain can be erased by selecting QUIT.
If the system is networking, the CHANGE VEHICLES selection is not available, and
QUIT halts the program.

If the operator selects CHANGE VEHICLES, the display changes to the
large contour map with the vehicle ICONS. The menu selections are now the same ones

used during the initialization sequence just after RUN was selected:

ZO0MIN/OUT
QUIT PROGRAM

Figare S 80 Jeep View

:'J:—‘:-f.-f\{.‘nh:

S P
-'\.f\d'

2

-

L ,

. '

— ir,
[ab]

uns

I

Fignre

I S SN A O R N

h
n.la

M

The viewing vehicle can be changed by moving the cursor over any vehicle ICON and
pushing the left mouse button. The driving display then appears with the view from the
newly selected vehicle,

If QUIT is selected, the display changes to the large contour map without
any vehicle ICONS, with menu selections identical to what is presented prior to selecting
RUN. Now the vehicles can be laid down as 1f just starting the program.

To »top the program, QUIT PROGRAM is selected. Typing control C
also exits the program, saving the last frame displayed, which can be saved in a file if
destred.

4, Target Desiruction

When the vehicle system is networking with the missile system, at
sometime a vehicle will be hit by a missile. If a non-driven vehicie is hit, an explosion
appears on the screen at the same location of the hit vehicle. The large contour map is
then displayed with a red X at the location of the destroyed vehicle. If the driven vehicle
1s hit by the missile, the screen changes into a series of flashes and then the large contour
map is displayed. The driving display is restarted by selecting a vehicle that has not been

destroyed.

126

S .‘-\- A R R S L N L ARG SRS T LA T A L B R
s X RS IO A .a'.r'\r N B R N SO T,

el ot Bl

L okl a8l arh 4 i S GBSl And Ank Bairabditidnd MR Sad Gl R Bl Bl

e

N

\: VI. CONCLUSIONS AND RECOMMENDATIONS

N

. A. LIMITATIONS

H The Moving Vehicle Simulator is limited in two general respects. The real-time
l'.',_ simulation display rate cannot be improved beyond the capacity of the present hardware
configuration. In addition, the networking implementation is simple and doces not provide
the general distributed system described in Chapter IV.
.:: Due to hardware performance, several specific limitations are present in the
: Moving Vehicle Simulator with respect to display realism. First, vehicle objects
.‘E:ﬁ‘_ displayed are constructed using special drawing technigues versus sorting routines for
drawing order. This is done to maintain a fast frame rate required for a real-ume display.
i Once the design of special hardware provides faster Z buffer and polygon fill rates, the
:.}:': ‘ vehicle objects can then be constructed using a sorted drawing order and made with more
e polygons for added detail.

- Second, when a vehicle travels in a northeriy direction over a hill made up of the
i‘ two triangles of a single gnid square, distortion occurs as it passes over the crest of the
5’:: hill (Figure 6-1). This is due to a drawing order of lower triangle, then upper triangle,
:Ef’ and finally vehicle. The vehicle draws over the upper trnangle when it should be
?‘; obscured by this triangle. This drawing order can be corrected by assigning each vehicle
', to either the upper or lower tmangle of a grid square. Now the vehicles are sorted based
.’._ on which section of each grid square they are in, and drawn with that section of the gnid
6..:,‘ square. This i1s not implemented in this study based on real-time performance
-

NG 127
La" s

. . Al Ly Al ek il N A S DAl A/ Al . i S Ask il el Sl A A R A0l Nl el Pl el i Aek cad % '."'-"w

o
e

~ —d .

Hill
S Viewing

Ny Direction

AN

lower upper

Figure 6-1. Display Scene

constraints. A modificaton of both update vehicle grid() and display terrain(j would
have to Se made to decide 10 which order to draw the grid square triangles and the
vehicles 1n this case. This 1s a ime intensive computation which lowers the frame rate 10

an unacceptable level

Third, the terrain modeled in this study has no cultural features, such as lakes,

: trees and bushes. All of the terrain polygons are shaded to give a checkerboard display.
: The checkerboard effect 1s not realisuc. However 1t gives a visual effect of motion and
; depth when viewing or travelling on the terrain. The integration of cultural features
;: using texture maps is under study at the Naval Postgraduate School. Presently, to include
:':',".‘t: the simplest texture map, would take 100 long a time period for a real-ume display.

g

7 128
J."‘
’-"'l
-
b e,
Fa

]

e
b7~

s

e o L TE U
AT, AT AT A

P,
LY F N NV TN,

%

> - A BacY N . . A N ' - “ “ Ve - . - - PAACA A S AP R et h aiih ot SR o Al alla= ol sl Pad

..
T T

’

A

s

Fourth, the vehicle object’s are not light-shaded tor all onientations on the terrain

[WX

map. Each vehicle is light-shaded during program initialization for a northern light

TR
o

o -
sl

source and an eastern vehicle course No matter what course the vehicle travels on the

\ terrain, 1t 1s always shaded as if the sun 18 on 1ty left side. This can be corrected by
- calling the hght shading furction for each polygon of the moving vehicle, peniodically
. throughout the program’s execution. Since each call to the light orient() tunction takes
W
g (0 3.4 millisec. the refresh rate of the display would be unacceptable.
:f'{ Fifth. a vehicle can dnve through another vehicle causing a distorted display.
The 1mplementaton of an algonthm that would decide when two vehicles occupied the
b
) same space on the terrain, would require calculating the distance between all vehicles
each frame If a collision is imminent, one of the vehicles could be turned away or

.' stopped. The calculation of the distance between all the vehicles each frame can not be
:'-'_* implemented in a time frame to provide a tast frame rate.

S The Moving Vehicle Simulator can be operated in networked mode with the
D) FOG-M Simulator, but only one console of each type can be included in this network. In
o addition, the use of blocking socket /O as described in Chapter 1V removes some of the
'}\-j,' capabilities of the stand-alone mode of the Moving Vehicle Simulator. The vehicle
o operator cannot decide to drive a different vehicle while the FOG-M missile is in flight,
:::' and he cannot reset the Moving Vehicie Simulator at any ume dunng the display loop.
";:' Both of these features are available in the stand-alone mode ot operation.

¢
.:;:f 129

P

®

A

-f‘_‘.

o

=

. P I S N P I R IO IR e |
X Vf._r‘,"- \,ﬂ.,..f'\v‘\ ‘f" » '_\ A

.A

'IIIJ‘

LAY ‘-.‘n.’l;w

B. FUTURE RESEARCH

Hardware improvements will allow more cultural features to be incorporated to
improve display realism without sacrificing the display update rate. Two areas could be
addressed first that would lend much more realism to the display at minimal cost. A
dynamic lighung model could provide such features as fog or dust or a changing set of
weather conditions, and reducing the grid square dimensions would produce smoother
looking terrain. More costly improvements could uulize Gouraud shading for polygon
colonng and Z-Buffening for hidden surface removal. Current research at the Naval
Postgraduate School is investgating the use of texture mapping in real-ume displays, and
the use of a LISP machine to provide path planning for vehicles in the display. Off-
loading non-graphics processing to other machines, such as path planning and updating
the moving platform position, speed and other attributes, would serve to increase both the
simulator frame rate and the "look-and-feel” realism of driving across terrain. In
addition, research 1s being conducted on implementing a network data server that would

allow a separate node to handle all non-graphics processing.

130

R R C et - N e e
S oA r .v- o " 7 s \.r\q.‘?./,‘-_ .r\.r o

i b Badl snd Sl Sl Jes S Sad A8 2 o

LGRS 20 alhic atd ol w*

cpran
» .i".i{‘

..........

. 4 'y .l,l.',','
. PR R

LIST OF REFERENCES

F RPN
T B

{11 Smuth, D. B. and Swevle, D. G., "*An Inexpensive Real-Time Inweractive Three-

Dimensional Flight Simulation System,”” M. 5. Thesis, Naval Postgraduate School,

Monterey, California, June 1987.
f‘.‘ (2] Hearn, D. and Baker. P. M., Computer Graphics (Prentice Hall, Englewood, New
_ Jersey, 1986)
‘ {31 Fuchs, H., Abramn, G. D., and Grant, E. D., "*Near Real-Time Shaded Display of
| Rigid Objects.” Computer Graphics 17, (July 1983).
(4] IRIS User's Manual Version 2.0 (Silicon Graphics, Inc., Mountain View,
..' Califormnia, 19%6).
[S] Leffler, S J., Fabry, R. S., Joy. W. N.| Lapsley, P, Miller, S., and Torek, C., **An
Advanced 4.3BSD Interprocess Communication Tutonal,”” UNIX Programmer’s
Supplementary Documents 1, (1986).
Il
~
.
."-
o

v

A SRR LR

y Y '- .
& r‘.. '."." ., oy

131

T ¥ g TR
PANRANE B
.l
l.

"

Y

..................

Distribution List for Dr. Michael J. Zyda

Defense Technical Information Center,
Cameron Station,
Alexandna, VA 22314 ‘ 2 copies

Library, Code 0142
Naval Postgraduate School,
Monterey, CA 93943 2 copies

e Center for Naval Analyses,
N 4401 Ford Avenue
¢ Alexandria, VA 22302-0268 1 copy

Director of Research Administration,

Code 012,

Naval Postgraduate School,

D Monterey, CA 93943 1 copy

A Dr. Michael J. Zyda

o Naval Postgraduate School,

. Code 52, Dept. of Computer Science

Monterey, California 93943-5100 200 copies

Mr. Bill West,

HQ, USACDEC,

Attention: ATEC-D,

Fort Ord, California 93941 1 copy

John Maynard,
Naval Ocean Systems Center,
Code 402,
San Diego, California 92152 1 copy
:':-‘_' El Wells,
Naval Ocean Systems Center,

Code 443,
25 San Diego, California 92152 1 copy
®

NN Roger Casey,

ey Naval Ocean Systems Center,

“ Code 84,
o San Diego, California 92152 1 copy
Y

o Dr. Al Zied,

N Naval Ocean Systems Center, J

Code 433,

N San Diego, California 92152

N A ST N A AT T T
WL G EL 20 M ARG NN,

Rk ad A4 wd of D ANERVE JOE 1

v

YTy

LA SO A8 el Bl Sl

v

L
—©
/56

!

=
-
()

R DR AR ARY DI LI A vy

TN P AR LR LMY e sy 0, 0, At g LY <~ @
o [L e % 4y 4 TN Yy yox L - b = e W

‘ O ARSI ~. . u-,.- @y, \ﬂ,Vl&.. IR A 5 4 ¥ y? .'

